On the existence problem for a fixed point of a generalized contracting multivalued mapping

Cover Page

Cite item

Abstract

We discuss the still unresolved question, posed in [S.~Reich, Some Fixed Point Problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194--198], of existence in a complete metric space $X$ of a fixed point for a generalized contracting multivalued map $\Phi: X \rightrightarrows X $ having closed values $ \Phi (x) \subset X$ for all $ x \in X. $ Generalized contraction is understood as a natural extension of the Browder--Krasnoselsky definition of this property to multivalued maps:
 \begin{equation*}
\forall x, u \in X \ \ h \bigl(\varphi(x), \varphi(u) \bigr) \leq \eta \bigl(\rho(x, u) \bigr),
 \end{equation*}
 where the function $ \eta: \mathbb {R}_+\to\mathbb{R}_+$ is increasing, right continuous, and for all $d>0,$\linebreak $\eta(d)

About the authors

Evgeny S. Zhukovskiy

Derzhavin Tambov State University; V. A. Trapeznikov Institute of Control Sciences of RAS

Author for correspondence.
Email: zukovskys@mail.ru
ORCID iD: 0000-0003-4460-7608

Doctor of Physics and Mathematics, Professor, Director of the Research Institute of Mathematics, Physics and Informatics; Leading Researche

Russian Federation, 33 Internatsionalnaya St., Tambov 392000, Russian Federation; 65 Profsoyuznaya St., Moscow 117997, Russian Federation

References

  1. S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181.
  2. S. Kobzash, “Fixed points and completeness in metric and generalized metric spaces”, Fundam. Prikl. Mat., 22:1 (2018), 127–215 (In Russian).
  3. S.B. Nadler, “Multi-valued contraction mappings”, Pacific Journal of Mathematics, 30:2 (1969), 475–488.
  4. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Sb. Math., 209:8 (2018), 1107–1130.
  5. Yu. G. Borisovich, B.D. Gel’man, A.D. Myshkis, V.V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 (In Russian).
  6. A. Granas, J. Dugundji, Fixed Point Theory, Monograph, Springer–Verlag, New York, 2003.
  7. A.V. Arutyunov, A.V. Greshnov, “(q_1,q_2) -quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272.
  8. I.A. Bakhtin, “The principle of contracted mappings in almost metric spaces”, Functional Analysis, 30 (1989), 26–37 (In Russian).
  9. D. Panthi, K. Jha, G. Porru, “A fixed point theorem in dislocated quasi-metric space”, American Journal of Mathematics and Statistics, 3:3 (2013), 153–156.
  10. T.V. Zhukovskaya, W. Merchela, A.I. Shindyapin, “On coincidence points of mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian).
  11. E.S. Zhukovskiy, E.A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proc. Steklov Inst. Math. (Suppl.), 305:suppl. 1 (2019), S191–S203.
  12. F.E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A., 71 (1968), 27–35.
  13. M.A. Krasnoselsky, G.M. Vainiko, P.P. Zabreiko, Ya. B. Rutitskiy, V.Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka Publ., Moscow, 1969 (In Russian).
  14. J. Jachymski, “Around Browder’s fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61.
  15. D.W. Boyd, J.S.W. Wong, “On nonlinear contractions”, Proceedings of the American Mathematical Society, 89 (1968), 458–464.
  16. E.S. Zhukovsky, “A note on generalized compression theorems”, Mat. notes, 111:2, (to appear) (2022), 211–218 (In Russian).
  17. A.I. Perov, “Multidimensional version of M. A. Krasnosel’skii’s generalized contraction principle”, Funct. Anal. Appl., 44:1 (2010), 69–72.
  18. E.S. Zhukovskiy, “The fixed points of contractions of f -quasimetric spaces”, Siberian Math. J., 59:6 (2018), 1063–1072.
  19. T.V. Zhukovskaya, E.S. Zhukovskiy, “About one quasi-metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1285–1292 (In Russian).
  20. S. Reich, “Fixed points of contractive functions”, Italian Mathematical Union. Bulletin, 5:4 (1972), 26–42.
  21. S. Reich, “Some fixed point problems”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198.
  22. S. Reich, “Some problems and results in fixed point theory”, Contemporary Mathematics AMS, 21 (1983), 179–187.
  23. P.V. Semenov, “Fixed points of multivalued contractions”, Funct. Anal. Appl., 36:2 (2002), 159–161.
  24. P.Z. Daffer, H. Kaneko, W. Li, “On a conjecture of S. Reich”, Proceedings of the American Mathematical Society, 124:10 (1996), 3159–3162.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).