On the existence problem for a fixed point of a generalized contracting multivalued mapping
- Authors: Zhukovskiy E.S.1,2
-
Affiliations:
- Derzhavin Tambov State University
- V. A. Trapeznikov Institute of Control Sciences of RAS
- Issue: Vol 26, No 136 (2021)
- Pages: 372-381
- Section: Original articles
- URL: https://journals.rcsi.science/2686-9667/article/view/296478
- ID: 296478
Cite item
Full Text
Abstract
We discuss the still unresolved question, posed in [S.~Reich, Some Fixed Point Problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194--198], of existence in a complete metric space $X$ of a fixed point for a generalized contracting multivalued map $\Phi: X \rightrightarrows X $ having closed values $ \Phi (x) \subset X$ for all $ x \in X. $ Generalized contraction is understood as a natural extension of the Browder--Krasnoselsky definition of this property to multivalued maps:
\begin{equation*}
\forall x, u \in X \ \ h \bigl(\varphi(x), \varphi(u) \bigr) \leq \eta \bigl(\rho(x, u) \bigr),
\end{equation*}
where the function $ \eta: \mathbb {R}_+\to\mathbb{R}_+$ is increasing, right continuous, and for all $d>0,$\linebreak $\eta(d)
About the authors
Evgeny S. Zhukovskiy
Derzhavin Tambov State University; V. A. Trapeznikov Institute of Control Sciences of RAS
Author for correspondence.
Email: zukovskys@mail.ru
ORCID iD: 0000-0003-4460-7608
Doctor of Physics and Mathematics, Professor, Director of the Research Institute of Mathematics, Physics and Informatics; Leading Researche
Russian Federation, 33 Internatsionalnaya St., Tambov 392000, Russian Federation; 65 Profsoyuznaya St., Moscow 117997, Russian FederationReferences
- S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181.
- S. Kobzash, “Fixed points and completeness in metric and generalized metric spaces”, Fundam. Prikl. Mat., 22:1 (2018), 127–215 (In Russian).
- S.B. Nadler, “Multi-valued contraction mappings”, Pacific Journal of Mathematics, 30:2 (1969), 475–488.
- A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “On the cardinality of the coincidence set for mappings of metric, normed and partially ordered spaces”, Sb. Math., 209:8 (2018), 1107–1130.
- Yu. G. Borisovich, B.D. Gel’man, A.D. Myshkis, V.V. Obukhovskii, Introduction to the Theory of Multi-valued Mappings and Differential Inclusions, 2nd ed., Librokom, Moscow, 2011 (In Russian).
- A. Granas, J. Dugundji, Fixed Point Theory, Monograph, Springer–Verlag, New York, 2003.
- A.V. Arutyunov, A.V. Greshnov, “(q_1,q_2) -quasimetric spaces. Covering mappings and coincidence points”, Izv. Math., 82:2 (2018), 245–272.
- I.A. Bakhtin, “The principle of contracted mappings in almost metric spaces”, Functional Analysis, 30 (1989), 26–37 (In Russian).
- D. Panthi, K. Jha, G. Porru, “A fixed point theorem in dislocated quasi-metric space”, American Journal of Mathematics and Statistics, 3:3 (2013), 153–156.
- T.V. Zhukovskaya, W. Merchela, A.I. Shindyapin, “On coincidence points of mappings in generalized metric spaces”, Russian Universities Reports. Mathematics, 25:129 (2020), 18–24 (In Russian).
- E.S. Zhukovskiy, E.A. Panasenko, “On fixed points of multivalued mappings in spaces with a vector-valued metric”, Proc. Steklov Inst. Math. (Suppl.), 305:suppl. 1 (2019), S191–S203.
- F.E. Browder, “On the convergence of successive approximations for nonlinear functional equations”, Nederl. Akad. Wetensch. Proc. Ser. A., 71 (1968), 27–35.
- M.A. Krasnoselsky, G.M. Vainiko, P.P. Zabreiko, Ya. B. Rutitskiy, V.Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka Publ., Moscow, 1969 (In Russian).
- J. Jachymski, “Around Browder’s fixed point theorem for contractions”, J. Fixed Point Theory Appl., 5:1 (2009), 47–61.
- D.W. Boyd, J.S.W. Wong, “On nonlinear contractions”, Proceedings of the American Mathematical Society, 89 (1968), 458–464.
- E.S. Zhukovsky, “A note on generalized compression theorems”, Mat. notes, 111:2, (to appear) (2022), 211–218 (In Russian).
- A.I. Perov, “Multidimensional version of M. A. Krasnosel’skii’s generalized contraction principle”, Funct. Anal. Appl., 44:1 (2010), 69–72.
- E.S. Zhukovskiy, “The fixed points of contractions of f -quasimetric spaces”, Siberian Math. J., 59:6 (2018), 1063–1072.
- T.V. Zhukovskaya, E.S. Zhukovskiy, “About one quasi-metric space”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1285–1292 (In Russian).
- S. Reich, “Fixed points of contractive functions”, Italian Mathematical Union. Bulletin, 5:4 (1972), 26–42.
- S. Reich, “Some fixed point problems”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 57:8 (1974), 194–198.
- S. Reich, “Some problems and results in fixed point theory”, Contemporary Mathematics AMS, 21 (1983), 179–187.
- P.V. Semenov, “Fixed points of multivalued contractions”, Funct. Anal. Appl., 36:2 (2002), 159–161.
- P.Z. Daffer, H. Kaneko, W. Li, “On a conjecture of S. Reich”, Proceedings of the American Mathematical Society, 124:10 (1996), 3159–3162.
Supplementary files
