Ekeland variational principle for quasimetric spaces

Cover Page

Cite item

Full Text

Abstract

 In this paper, we study real-valued functions defined on quasimetric spaces. A generalization of Ekeland’s variational principle and a similar statement from the article [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011] is obtained for them. The modification of the variational principle given here is applicable, in particular, to a wide class of functions unbounded from below. The result obtained is applied to the study the minima of functions defined on quasimetric spaces. A Caristi-type condition is formulated for conjugate-complete quasimetric spaces. It is shown that the proposed Caristi-type condition is a sufficient condition for the existence of a minimum for lower semicontinuous functions acting in conjugate-complete quasimetric spaces.

About the authors

Richik Sengupta

Skolkovo Institute of Science and Technology; Derzhavin Tambov State University

Author for correspondence.
Email: r.sengupta@skoltech.ru
ORCID iD: 0000-0001-9916-8177

Candidate of Physics and Mathematics, Researcher

Russian Federation, 30 Bolshoy Boulevard, Territory of the Skolkovo Innovation Center, Moscow 121205, Russian Federation; 33 International St., Tambov 392036, Russian Federation

References

  1. A.V. Arutyunov, A.V. Greshnov, “Theory of (q1; q2) -quasimetric spaces and coincidence points”, Dokl. RAS, 94:1 (2016), 434–437.
  2. M.A. Krasnosel’skiy, P.P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian).
  3. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II, Dover Publications, Mineola, New York, 1957, 1961.
  4. J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, J. Wiley & Sons, N.Y., 1984.
  5. A.V. Arutyunov, B.D. Gel’man, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58.
  6. R. Vinter, Optimal Control, Birkhauser, Boston, 2000.
  7. A.V. Arutyunov, V.A. de Oliveira, F.L. Pereira, E.S. Zhukovskiy, S.E. Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143.
  8. A.V. Arutyunov, N.T. Tynyanskii, “The maximum principle in a problem with phase constraints”, Soviet Journal of Computer and System Sciences, 23 (1985), 28–35.
  9. J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251.
  10. A. Granas, J. Dugundji, Fixed Point Theory, Springer–Verlag, N.Y., 2003.
  11. M.A. Khamsi, “Remarks on Caristi’s fixed point theorem”, Nonlinear Analysis, Theory, Methods and Applications, 71:1-2 (2009), 227–231.
  12. A.V. Arutyunov, E.R. Avakov, S.E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828.
  13. E.S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94.
  14. A.V. Arutyunov, S.E. Zhukovskiy, N.G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169.
  15. J.M. Borwein, D. Preiss, “A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions”, Trans. Amer. Math. Soc., 303:2 (1987), 517–527.
  16. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33.
  17. A.V. Arutyunov, S.E. Zhukovskiy, “Variational Principles in Nonlinear Analysis and Their Generalization”, Mathematical Notes, 103:5-6 (2018), 1014–1019.
  18. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61.
  19. R. Sengupta, S. Zhukovskiy, “Ekeland’s Variational Principle for Functions Unbounded from below”, Discontinuity, Nonlinearity and Complexity, 9:4 (2020), 553–558.
  20. S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, 158:8 (2011), 1073–1084.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».