Stability of a weak solution for a hyperbolic system with distributed parameters on a graph

Cover Page

Cite item

Abstract

In the work, the stability conditions for a solution of an evolutionary hyperbolic system with distributed parameters on a graph describing the oscillating process of continuous medium in a spatial network are indicated. The hyperbolic system is considered in the weak formulation: a weak solution of the system is a summable function that satisfies the integral identity which determines the variational formulation for the initial-boundary value problem. The basic idea, that has determined the content of this work, is to present a weak solution in the form of a generalized Fourier series and continue with an analysis of the convergence of this series and the series obtained by its single termwise differentiation. The used approach is based on a priori estimates of a weak solution and the construction (by the Fayedo–Galerkin method with a special basis, the system of eigenfunctions of the elliptic operator of a hyperbolic equation) of a weakly compact family of approximate solutions in the selected state space. The obtained results underlie the analysis of optimal control problems of oscillations of netset-like industrial constructions which have interesting analogies with multi-phase problems of multidimensional hydrodynamics.

About the authors

Vyacheslav V. Provotorov

Voronezh State University

Author for correspondence.
Email: wwprov@mail.ru
ORCID iD: 0000-0001-8761-7174

Doctor of Physical and Mathematical Sciences, Professor of the Partial Differential Equations and Probability Theory Department

Russian Federation, 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Alexei P. Zhabko

St Petersburg University

Email: zhabko.apmath.spbu@mail.ru
ORCID iD: 0000-0002-6379-0682

Doctor of Physical and Mathematical Sciences, Professor, Head of the Management Department

Russian Federation, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russian Federation

References

  1. V. V. Provotorov, S. M. Sergeev, A. A. Part, "Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:1 (2019), 107-117.
  2. O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka Publ., Moscow, 1973, 407 pp.
  3. A.P. Zhabko, A. I. Shindyapin, V. V. Provotorov, "Stability of weak solutions of parabolic systems with distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457-471.
  4. V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, "Unique weak solvability of nonlinear initial boundary value problem with distributed parameters in the netlike domain", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264-277.
  5. A. S. Volkova, V. V. Provotorov, "Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph", Russian Mathematics, 58:3 (2014), 1-13.
  6. V. V. Provotorov, E. N. Provotorova, "Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209-224.
  7. V. V. Provotorov, "Expansion of eigenfunctions of Sturm-Liouville problem on astar graph", Russian Mathematics, 3 (2008), 45-57.
  8. O. A. Ladyzhenskaya, A Mixed Problem for Hyperbolic Equations, GITTL, M., 1953 (In Russian), 282 pp.
  9. A.P. Zhabko, V. V. Provotorov, O. R. Balaban, "Stabilization of weak solutions of parabolic systems with distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187-198.
  10. J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems, Mir Publ., Moscow, 1972, 587 pp.
  11. V. V. Provotorov, E. N. Provotorova, "Optimal control of the linearized Navier-Stokes system in a netlike domain", Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431-443.
  12. M. A. Artemov, E. S. Baranovskii, A.P. Zhabko, V. V. Provotorov, "On a 3D model of non-isothermal ows in a pipeline network", Journal of Physics. Conference Series, 1203 (2019), Article ID 012094.
  13. S. L. Podvalny, V. V. Provotorov, "Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph", Vestnik of Voronezh State Technical University, 10:6 (2014), 29-35.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).