Hermite functions and inner product in Sobolev space

Cover Page

Cite item

Abstract

Let us consider the orthogonal Hermite system {φ2n(x)}n0 of even index defined on (-,), where φ2n(x)=e-x22(2n)!π142n)H2n(x),

by H2n(x) we denote a Hermite polynomial of degree 2n. In this paper, we consider a generalized system {ψr,2n(x)} with r>0, n0 which is orthogonal with respect to the Sobolev type inner product on (-,), i.e. f,g=lim(t-)k=0r-1f(k)(t)g(k)(t)+-f(r)(x)g(r)(x)ρ(x)dx

with ρ(x)=e(-x2), and generated by φ2n(x)n0. The main goal of this work is to study some properties related to the system ψr,2n(x)n0ψr,n(x)=(x-a)nn!,  n=0,1,2,, r-1,  ψr,r+n(x)=1(r-1)!ab(x-t)r-1φn(t)dt,  n=0,1,2,.

We study the conditions on a function f(x), given in a generalized Hermite orthogonal system, for it to be expandable into a generalized mixed Fourier series as well as the convergence of this Fourier series. The second result of the paper is the proof of a recurrent formula for the system ψ(r,2n)(x)n0. We also discuss the asymptotic properties of these functions, and this concludes our contribution.

About the authors

Mohamed Ahmed Boudref

University of Bouira

Author for correspondence.
Email: m.boudref@univ-bouira.dz

PhD of Mathematics, Director of the LIMPAF Mathematics and Computer Science Laboratory, Lecturer of the High Mathematics Department

Algeria, 10000, Drissi Yahia Bouira St., Bouira, Algeria

References

  1. I.I. Sharapudinov, "Approximation of functions of variable smoothness by Fourier-Legendre sums", Sb. Math., 191:5 (2000), 759-777.
  2. I. Sharapudinov, Mixed Series of Orthogonal Polynomials, Daghestan Sientific Centre Press, Makhachkala, 2004.
  3. I.I. Sharapudinov, "Approximation properties of mixed series in terms of Legendre polynomials on the classes W^r", Sb. Math., 197:3 (2006), 433-452.
  4. I.I. Sharapudinov, "Sobolev orthogonal systems of functions associated with an orthogonal system", Izv. Math., 82:1 (2018), 212-244.
  5. M.A. Boudref, "Inner product and Gegenbauer polynomials in Sobolev space", Russian Universities Reports. Mathematics, 27:138 (2022), 150-163.
  6. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1-st ed., Dover Publications, USA, 1964.
  7. G. Szego, Orthogonal Plynomials. V. 23, American Mathematical Society, Providence, Rhode Island, 1975, 432 pp.
  8. V. Smirnov, Higher Mathematics Courses. V. III, Mir Publ., Moscow, 1972 (In French).
  9. R. Askey, S. Wainger, "Mean convergence of expansions in Laguerre and Hermite series", American Journal of Mathematics, 87 (1965), 698-708.
  10. B. Muckenhoupt, "Mean convergence of Hermite and Laguerre series. II", Transactions of the American Mathematical Society, 147:2 (1970), 433-460.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).