Ordinary differential equations and differential equations with delay: general properties and features

Cover Page

Cite item

Abstract

We consider the differential equation with delay

x ̇(t)=f(t,x(h(t) ) ),    t0,     x(s)=φ(s),     s<0,

with respect to an unknown function f:R+×RR absolutely continuous on every finite interval. It is assumed that the function  is superpositionally measurable, the functions φ:(-,0)R, h:R+R are measurable, and h(t)t for a. e. t0. If the more burdensome inequality h(t)t-τ holds for some τ>0, then the Cauchy problem for this equation is uniquely solvable and any solution can be extended to the semiaxis R+. At the same time, the Cauchy problem for the corresponding differential equation

x ̇(t)=f(t,x(t) ),    t0,

may have infinitely many solutions, and the maximum interval of existence of solutions may be finite. In the article, we investigate which of the listed properties a delay equation possesses (i.e. has a unique solution or infinitely many solutions, has finite or infinite maximum interval of existence of solutions), if the function  has only one “critical’’ point t00, a point for which the measure of the set t(t0-ε,t0+ε)R+:h(t)>t-ε is positive for any ε>0. It turns out that for such a delay function, the properties of solutions are close to those of solutions of an ordinary differential equation. In addition, we consider the problem of the dependence of solutions of a delay equation on the function h.

About the authors

Nikita S. Borzov

Derzhavin Tambov State University; V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: borzov-nikita@mail.ru
ORCID iD: 0009-0005-7439-0405

Post-Graduate Student, Functional Analysis Department

Russian Federation, 33 International St., Tambov 392036, Russian Federation; 65 Profsoyuznaya St., Moscow 117997, Russian Federation

Tatiana V. Zhukovskaia

Tambov State Technical University

Email: t_zhukovskaia@mail.ru
ORCID iD: 0000-0003-4374-4336

Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department

Russian Federation, 106/5 Sovetskaya St., Tambov 392000, Russian Federation

Irina D. Serova

Derzhavin Tambov State University

Email: irinka_36@mail.ru
ORCID iD: 0000-0002-4224-1502

Post-Graduate Student. Functional Analysis Department

Russian Federation, 33 International St., Tambov 392036, Russian Federation

References

  1. N.V. Azbelev, V.P. Maksimov, L.F. Rahmatullina, Introduction to the Theory of Functional Differential Equations, Nauka Publ., Moscow, 1991 (In Russian).
  2. N.V. Azbelev, V.P. Maksimov, L.F. Rahmatullina, Elements of the Modern Theory of Functional Differential Equations. Methods and Applications, Institute for Computer Research, Moscow, 2002 (In Russian).
  3. V.P. Maksimov, Questions of the General Theory of Functional Differential Equations. Selected Works., PGU PSI PSSGK, Perm’, 2003 (In Russian).
  4. N.V. Azbelev, V.P. Maksimov, P.M. Simonov, “Theory of functional differential equations and applications”, International Journal of Pure and Applied Mathematics, 69:2 (2011), 203–235.
  5. E.S. Zhukovskii, “Continuous dependence on parameters of solutions to Volterra’s equations”, Sb. Math., 197:10 (2006), 1435–1457.
  6. E.O. Burlakov, E.S. Zhukovskii, “The continuous dependence of solutions to Volterra equations with locally contracting operators on parameters”, Russian Mathematics, 54:8 (2010), 12–23.
  7. E.O. Burlakov, E.S. Zhukovskiy, “On a correctness of boundary value problems and continuous dependence of periodic solutions of controllable systems on parameters”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Komp’yut. nauki, 2010, №1, 11–21 (In Russian).
  8. E. Burlakov, E. Zhukovskiy, A. Ponosov, J. Wyller, “Existence, uniqueness and continuous dependence on parameters of solutions to neural field equations”, Memoirs on Differential Equations and Mathematical Physics, 65 (2015), 35–55.
  9. A.V. Arutyunov, S.E. Zhukovskiy, “Covering mappings acting into normed spaces and coincidence points”, Proc. Steklov Inst. Math., 315 (2021), 13–18.
  10. A.V. Arutyunov, S.E. Zhukovskiy, “Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations”, Proc. Steklov Inst. Math., 312 (2021), 1–15.
  11. A.V. Arutyunov, E.S. Zhukovskii, S.E. Zhukovskii, “On the well-posedness of differential equations unsolved for the derivative”, Differential Equations, 47:11 (2011), 1541–1555.
  12. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Covering mappings and well-posedness of nonlinear Volterra equations”, Nonlinear Analysis: Theory, Methods and Applications, 75:3 (2012), 1026–1044.
  13. E.S. Zhukovskiy, W. Merchela, “A method for studying integral equations by using a covering set of the Nemytskii operator in spaces of measurable functions”, Differential Equations, 58:92–103 (2022).
  14. S. Benarab, E.A. Panasenko, “Ob odnom vklyuchenii s otobrazheniem, dejstvuyushchim iz chastichno uporyadochennogo prostranstva v mnozhestvo s refleksivnym binarnym otnosheniem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp’yuternye nauki, 32:3 (2022), 361-382 (In Russian).
  15. V.I. Arnold, Catastrophe Theory, Nauka Publ., Moscow, 1990 (In Russian).
  16. I.A. Bogaevsky, “Implicit ordinary differential equations: bifurcations and sharpening of equivalence”, Izv. Math., 78:6 (2014), 1063–1078.
  17. A.A. Davydov, “Generic profit singularities in Arnold’s model of cyclic processes”, Proc. Steklov Inst. Math., 250 (2005), 70–84.
  18. A.A. Davydov, H. Mena Matos, “Generic phase transitions and profit singularities in Arnol’d’s model”, Sb. Math., 198:1 (2007),17–37.
  19. I.V. Shragin, “Superpositional measurability under generalized caratheodory conditions”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian).
  20. I.D. Serova, “Superpositional measurability of a multivalued function under generalized Caratheodory conditions”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:135 (2021), 305–314 (In Russian).
  21. Yu.G. Borisovich, B.D. Gel’man, A.D. Myshkis, V.V. Obuhovskij, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, 2nd ed., Librocom Publ., Moscow, 2011 (In Russian), 224 pp.
  22. E.S. Zhukovskiy, “Connectedness of the solution sets of inclusions”, Sb. Math., 210:6 (2019), 836–861.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).