Linear and nonlinear integral functional on the space of continuous vector functions

Cover Page

Cite item

Abstract

The present article is devoted to the study of a nonlinear integral functional of the form F(u)=Ωf(s,u(s))ds, where Ω is a closed bounded set in Rn, and the generating function f:Ω×XR (where X is real separable Banach space) satisfies Caratheodory conditions.

We study the action and boundedness of the functional F on the space C(X) of continuous vector functions u:ΩX and on the space L1(X) of essentially bounded vector functions (with natural norms).

The main results of the article are: 1) the equivalence of the action and boundedness of the functional F on the spaces C(X) and L1(X); 2) equivalence, for these spaces, of the numerical characteristic of the functional in the form of the supremum of the norm of the functional values on a closed ball; 3) expressing this numerical characteristic in terms of the function  that generates the functional.

Moreover, to extend the properties of the functional from C(X) to L1(X), we essentially use the results of I.V. Shragin on the study of the Nemytskii operator and its generating function, as well as his ideas and methods based on the consistent proof of special auxiliary statements that use, in particular, continuous and measurable choice theorems.

The results thus obtained for the functional F are specified for the case of a linear integral functional on spaces of Banach-valued functions (when f(s,x)=a(s)[x] for some function a:ΩX*), and in particular, it is established that the norm of this functional on the spaces C(X) and L1(X) is equal to Ωa(s)(X*)ds.

About the authors

Manuel J. Alves

Eduardo Mondlane University

Author for correspondence.
Email: mjalves.moz@gmail.com
ORCID iD: 0000-0003-3713-155X

PhD of Physics and Mathematics, Full Professor of the Mathematics and Informatics Department

Mozambique, Main Campus, PO. Box 257, Maputo, Mozambique

Elena V. Alves

High Institute of Sciences and Technologies Mozambique

Email: ealves@isctem.ac.mz
ORCID iD: 0009-0000-1452-2553

PhD of Physics and Mathematics, Associate Professor of the School of Economy and Business Administration

Mozambique, Street 1.194 no. 332, Central C, Maputo 1100, Mozambique

Joao S.P. Munembe

Eduardo Mondlane University

Email: jmunembe3@gmail.com
ORCID iD: 0000-0002-0380-6734

PhD of Physics and Mathematics, Full Professor of the Mathematics and Informatics Department

Mozambique, Main Campus, PO. Box 257, Maputo, Mozambique

Yury V. Nepomnyashchikh

Eduardo Mondlane University

Email: yuriy.nepomnyashchikh@uem.ac.mz
ORCID iD: 0009-0008-1374-4283

PhD of Physics and Mathematics, Associate Professor of the Mathematics and Informatics Department

Mozambique, Main Campus, PO. Box 257, Maputo, Mozambique

References

  1. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis. V. I, II, Dover Publications, Mineola, New York, 1957, 1961.
  2. L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press Ltd. & Nauka Publ., Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1982.
  3. J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys. V. 15, AMS, Providence, 1977.
  4. I.V. Shragin, “The Nemytskii operator from C to LM ”, Scientific notes of the Moscow Regional Pedagogical Institute, 77:5 (1969), 161–178 (In Russian)].
  5. I.V. Shragin, “Conditions for measurability of superpositions”, Soviet Mathematics, Doklady, 12:2 (1971), 465–470.
  6. I.V. Shragin, “Superposition measurability”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, №1, 82–92 (In Russian)].
  7. I.V. Shragin, “On one application of the theorems of Luzin, Tietze-Urysohn and the measurable choice theorem”, Boundary Value Problems, Interuniversity Collection of Scientific Papers, Perm Polytechnic Institute, Perm, 1979, 171–175 (In Russian)].
  8. I.V. Shragin, Y.V. Nepomnyashchikh, “The Carathґeodory D -conditions and their connection with the D -continuity of the Nemytskij operator”, Russian Math. (Iz. VUZ), 41:6 (1997), 66–78.
  9. A.V. Ponosov, Y.V. Nepomnyashchikh, “The necessity of the Carathґeodory conditions for the lower semicontinuity in measure of the multivalued Nemytskii operator”, Nonlinear Analysis: Theory, Methods & Applications, 30:2 (1997), 727–734.
  10. I.V. Shragin, “Superposition measurability under generalized Carathґeodory conditions”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 19:2 (2014), 476–478 (In Russian)].
  11. I.D. Serova, “Superposition measurability of a multivalued function under generalized Carathґeodory conditions”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:135 (2021), 305–314 (In Russian)].
  12. V.L. Levin, Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics, Nauka Publ., Moscow, 1985 (In Russian)].
  13. I.P. Natanson, Theory of Functions of a Real Variable. V. I, Dover Publ., Mineola, New York, 2016.
  14. Y.V. Nepomnyashchikh, Properties of the Uryson Operator in Spaces of Uniformly Continuous and Almost Periodic Functions, Dep. VINITI, no. 2787–B92, PSU, Perm, 1992 (In Russian)].

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).