Existence and uniqueness of solutions to stochastic fractional differential equations in multiple time scales

Cover Page

Cite item

Abstract

A novel class of nonlinear stochastic fractional differential equations with delay and the Jumarie and Ito differentials is introduced in the paper. The aim of the study is to prove existence and uniqueness of solutions to these equations. The main results of the paper generalise some previous findings made for the non-delay and three-scale equations under additional restrictions on the fractional order of the Jumarie differentials, which are removed in our analysis. The techniques used in the paper are based on the properties of the singular integral operators in specially designed spaces of stochastic processes, the representation of delay equations as functional differential equations as well as Picard’s iterative method.

About the authors

Arcady Ponosov

Norwegian University of Life Sciences

Author for correspondence.
Email: arkadi@nmbu.no
ORCID iD: 0000-0001-5018-6577

Doctor of Natural Sciences, Professor of the Institute of Mathematics. Norwegian University of Life Sciences

Norway, №-1432 Ås 5003, Drøbakveien 31, Norway

References

  1. J.-C. Pedjeu, G.S. Ladde, “Stochastic fractional differential equations: Modeling, method and analysis”, Chaos, Solitons & Fractals, 45 (2012), 279–293.
  2. G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results”, Computational Mathematics and Applications, 51:9-10 (2006), 1367–1376.
  3. B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Springer, 2014.
  4. I. Neveu, Discrete Parameter Martingales, North-Holland, Amsterdam, 1975.
  5. N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatulina, Introduction to the Theory of Functional Differential Equations. Methods and Applications, Hindawi, New York, 2007.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).