On the interrelation of motions of dynamical systems in separable locally compact metric space with invariant measure

Cover Page

Cite item

Abstract

In this paper, we study the interrelation between recurrent and outgoing motions of dynamical systems. An outgoing motion is a motion whose α- and ω-limit sets are either empty or non-compact. It is shown that in a separable locally compact metric space Σ with invariant Caratheodory measure, almost all points lie on trajectories of motions that are either recurrent or outgoing, i. e. in the space Σ, the set of points Γ lying on the trajectories of nonoutgoing and non-recurrent motions has measure zero. Moreover, any motion located in Γ is both positively and negatively asymptotic with respect to the corresponding compact minimal sets. The proof of this assertion essentially relies on the classical Poincare-Caratheodory and Hopf recurrence theorems. From this proof and Hopf’s theorem, it follows that in a separable locally compact metric space, there can exist non-recurrent Poisson-stable motions, but all these motions must necessarily be outgoing. At the same time, in the compact space Σ any Poisson-stable motion is recurrent.

About the authors

Aleksandr P. Afanas’ev

Institute for Information Transmission Problems of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: apa@iitp.ru
ORCID iD: 0000-0002-4171-5745

Doctor of Physics and Mathematics, the Head of the Center for Distributed Computing; Professor

Russian Federation, 19 Bolshoy Karetny per., Moscow 127051, Russian Federation; GSP-1, Leninskie Gory, Moscow 119991, Russian Federation

Sergei M. Dzyuba

Tver State Technical University

Email: sdzyuba@mail.ru
ORCID iD: 0000-0002-2981-8549

Doctor of Physics and Mathematics, Professor of the Information Systems Department

Russian Federation, 22 Afanasiya Nikitina nab., Tver 170026, Russian Federation

References

  1. G.D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian).
  2. V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian).
  3. D.N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, HPC Publ., New York, 2009.
  4. A.P. Afanas’ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Russian Universities Reports. Mathematics, 26:133 (2021), 5–14 (In Russian).
  5. A.P. Afanas’ev, S.M. Dzyuba, “On the interrelation of motions of dynamical systems”, Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian).
  6. L. Schwartz, Analisys. V. I, Mir Publ., Moscow, 1972 (In Russian).
  7. A.P. Afanas’ev, S.M. Dzyuba, “New properties of recurrent motions and limit sets of dynamical systems”, Russian Universities Reports. Mathematics, 27:137 (2022), 5–15 (In Russian).
  8. P.S. Alexandroff, Introduction to the general theory of sets and funcrions, OGIZ-Gostekhizdat Publ., Moscow, 1948 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).