On the uniqueness of solution to the inverse problem of the atmospheric electricity
- Authors: Chernov A.V.1,2
-
Affiliations:
- National Research Lobachevsky State University of Nizhny Novgorod
- Nizhny Novgorod State Technical University named after R.E. Alekseev
- Issue: Vol 25, No 129 (2020)
- Pages: 85-99
- Section: Articles
- URL: https://journals.rcsi.science/2686-9667/article/view/295068
- DOI: https://doi.org/10.20310/2686-9667-2020-25-129-85-99
- ID: 295068
Cite item
Full Text
Abstract
We investigate the inverse problem of determination of two unknown numerical parameters occuring linearly and nonlinearly in the higher coefficient of a linear second order elliptic equation of the diffusion-reaction type in a domain Ω diffeomorphic to a ball layer under special boundary conditions by observation in neighborhoods of the correspondent amount of points. For an analogous inverse problem under Dirichlet boundary conditions, sufficient conditions of solution uniqueness was obtained by the author formerly, but they had an abstract character and so were inconvenient for practical usage. In the paper, these conditions are extended to the case of different boundary conditions and rendered concrete for the case of the exponential type higher coefficient. The inverse problem investigated in the paper refers to research of electric processes in the Earth atmosphere in the frame of global electric circuit in the stationary approximation and arises from needs of recovering the unknown higher coefficient of the equation on the base of observation data obtained from two local transmitters.
About the authors
Andrei V. Chernov
National Research Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod State Technical University named after R.E. Alekseev
Email: chavnn@mail.ru
Candidate of Physics and Mathematics, Associate Professor of the Applied Mathematics Department 23 Gagarin Ave., Nizhni Novgorod 603950, Russian Federation; 24 Minin St., Nizhni Novgorod 603950, Russian Federation
References
- А.А. Жидков, А.В. Калинин, “Некоторые вопросы математического и численного моделирования глобальной электрической цепи в атмосфере”, Вестник Нижегородского университета им. Н.И. Лобачевского, 2009, №6(1), 150-158.
- A.V. Kalinin, N.N. Slyunyaev, “Initial-boundary value problems for the equations of the global atmospheric electric circuit”, Journal of Mathematical Analysis and Applications, 450 (2017), 112-136.
- N.A. Denisova, A.V. Kalinin, “Influence of the choice of boundary conditions on the distribution of the electric field in models of the global electric circuit”, Radiophysics and Quantum Electronics, 61:10 (2019), 741-751.
- А.В. Чернов, “О единственности решения обратной задачи определения параметров в старшем коэффициенте и правой части эллиптического уравнения”, Дальневосточный математический журнал, 16:1 (2016), 96-110.
- E.A. Mareev, S.V. Anisimov, “Geophysical Studies of the Global Electric Circuit”, Izvestiya, Physics of the Solid Earth, 44:10 (2008), 760-769.
- Е.А. Мареев, “Достижения и перспективы исследований глобальной электрической цепи”, Успехи физических наук, 180:5 (2010), 527-534.
- J. Jansky, V.P. Pasko, “Effects of conductivity perturbations in time-dependent global electric circuit model”, Journal of Geophysical Research: Space Physics, 120:12 (2015), 10654-10668.
- V.V. Denisenko, M.J. Rycroft, R.G. Harrison, “Mathematical Simulation of the Ionospheric Electric Field as a Part of the Global Electric Circuit”, Surveys in Geophysics, 40:1 (2019), 1-35.
- В.Н. Морозов, Математическое моделирование атмосферно-электрических процессов с учетом влияния аэрозольных частиц и радиоактивных веществ, Российский государственный гидрометеорологический университет, СПб., 2011.
- A.J.G. Baumgaertner, J.P. Thayer, R.R. Neely, G. Lucas, “Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations”, Journal of Geophysical Research: Atmospheres, 118:16 (2013), 9221-9232.
- S.S. Davydenko, E.A. Mareev, T.C. Marshall, M. Stolzenburg, “On the calculation of electric fields and currents of mesoscale convective systems”, Journal of Geophysical Research, 109:D11 (2004), 1-10.
- G.M. Lucas, A.J.G. Baumgaertner, J.P. Thayer, “A global electric circuit model within a community climate model”, Journal of Geophysical Research: Atmospheres, 120:23 (2015), 12054-12066.
- V. Bayona, N. Flyer, G.M. Lucas, A.J.G. Baumgaertner, “A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)”, Geoscientific Model Development, 8:10 (2015), 3007-3020.
- Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989.
Supplementary files

