On connection between continuous and discontinuous neural field models with microstructure: II. Radially symmetric stationary solutions in 2D (“bumps”)

Cover Page

Cite item

Full Text

Abstract

We suggest a method allowing to investigate existence and the measure of proximity between the stationary solutions to continuous and discontinuous neural fields with microstructure. The present part involves results on proximity of the stationary solutions to specific homogenized neural field equations with continuous and discontinuous activation functions. The results of numerical investigation of radially symmetric stationary solutions (bumps) to the neural field with a discontinuous activation function and a given microstructure are presented.

About the authors

Evgenii O. Burlakov

Derzhavin Tambov State University

Email: eb_@bk.ru
PhD, Researcher at the Research and Educational Center “Fundamental Mathematical Research” 33 Internatsionalnaya St., Tambov 392000, Russian Federation

Ivan N. Malkov

University of Tyumen

Email: i.n.malkov@yandex.ru
Student of the Institute of Mathematics and Computer Science 6 Volodarskogo St., Tyumen 625003, Russian Federation

References

  1. Е.О.Бурлаков, М.А.Насонкина,“О связи непрерывных и разрывных моделей нейронных полей с микроструктурой: I. Общая теория”, Вестник Тамбовского университета. Серия: естественные и технические науки, 23:121(2018), 17-30.
  2. S. Bochner, K. Chandrasekharan, Fourier Transforms, Princeton University Press, New Jersey, 1949.
  3. E. Burlakov, E. Zhukovskiy, A. Ponosov, J. Wyller, “Ow well-posedness of generalized neural field equations with delay”, Journal of Abstract Differential Equations and Applications, 6:1 (2015), 51-80.
  4. A. Granas, “The Leray-Schauder index and the fixed point theory for arbitrary ANRs”, Bulletin de la Societe Mathematique de France, 100 (1972), 209-228.
  5. N. Svanstedt, J.L. Woukeng, “Homogenization of a Wilson-Cowan model for neural fields”, Nonlinear Analysis. Real World Applications, 14:3 (2013), 1705-1715.
  6. N. Svanstedt, J. Wyller, E. Malyutina, “A one-population Amari model with periodic microstructure”, Nonlinearity, 27 (2014), 1394-1417.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).