Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain

Cover Page

Cite item

Full Text

Abstract

In the paper, the stability conditions of a three-layer symmetric differential-difference scheme with a weight parameter in the class of functions summable on a network-like domain are obtained. To analyze the stability of the differential-difference system in the space of feasible solutions H , a composite norm is introduced that has the structure of a norm in the space H2 = H⊕H . Namely, for Y={Y 1 , Y 2 }∈ H2 , Yl ∈ H (l=1,2) , ∥ Y∥ H 2 = ∥ Y 1 ∥ 1, H 2 + ∥ Y 2 ∥ 2, H 2 , where ∥·∥ 1, H 2 ∥·∥ 2, H 2 are some norms in H . The use of such a norm in the description of the energy identity opens the way for constructing a priori estimates for weak solutions of the differential-difference system, convenient for practical testing in the case of specific differentialdifference schemes. The results obtained can be used to analyze optimization problems that arise when modeling network-like transfer processes with the help of formalisms of differentialdifference systems.

About the authors

Vyacheslav V. Provotorov

Voronezh State University

Email: wwprov@mail.ru
Doctor of Physical and Mathematical Sciences, Professor of the Partial Differential Equations and Probability Theory Department 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Van N. Hoang

Voronezh State University

Email: fadded9x@gmail.com
Post-Graduate Student. Partial Differential Equations and Probability Theory Department 1 Universitetskaya pl., Voronezh 394018, Russian Federation

References

  1. В.Н. Хоанг, “Дифференциально-разностная краевая задача для параболической системы с распределенными параметрами на графе”, Процессы управления и устойчивость, 7:1 (2020), 127-132.
  2. V.V. Provotorov, S.M. Sergeev, V.N. Hoang, “Point control of differential-difference system with distributed parameters on the graph”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 17:3 (2021), 277-286.
  3. V.V. Provotorov, E.N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 13:4 (2017), 431-443.
  4. M.A. Artemov, E.S. Baranovskii, A.P. Zhabko, V.V. Provotorov, “On a 3D model of nonisothermal flows in a pipeline network”, IOP Conference, Journal of Physics: Conference Series, 1203, IOP Publishing Ltd., 2019.
  5. E.S. Baranovskii, V.V. Provotorov, M.A. Artemov, A.P. Zhabko, “Non-isothermal creeping flows in a pipeline network: existence results”, Symmetry, 13 (2021), Article ID 1300.
  6. A.P. Zhabko, A.I. Shindyapin, V.V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 15:4 (2019), 457-471.
  7. А.С. Волкова, В.В. Провоторов, “Обобщенные решения и обобщенные собственные функции краевых задач на геометрическом графе”, Изв. вузов. Матем., 2014, №3, 3-18.
  8. А.А. Самарский, Теория разностных схем, Наука, М., 1977, 656 с.
  9. О.А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
  10. E. Rothe, “Thermal conductivity equations with non-constant coefficients”, Math. Ann., 1931, №104, 340-362.
  11. L.N. Borisoglebskaya, V.V. Provotorov, S.M. Sergeev, E.S. Kosinov, “Mathematical aspects of optimal control of transference processes in spatial networks”, IOP Conference. V. 573, Series: Materials Science and Engineering, IOP Publishing Ltd., 2019.
  12. V.V. Provotorov, E.N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 13:2 (2017), 209-224.
  13. A.P. Zhabko, V.V. Provotorov, O.R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 15:2 (2019), 187-198.
  14. S.L. Podvalny, V.V. Provotorov, E.S. Podvalny, “The controllability of parabolic systems with delay and distributed parameters on the graph”, Procedia Computer Sciense, 103 (2017), 324-330.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).