A counterexample to the stochastic version of the Brouwer fixed point theorem

Cover Page

Cite item

Full Text

Abstract

It is shown that the stochastic counterpart of the classical fixed point theorem for continuous maps in a finite dimensional Euclidean space (“Brouwer’s theorem”) is not, in general, true. This result implies, in particular, that a careful choice of invariant sets in the stochastic version of Brouwer’s theorem is necessary in the theory of stochastic nonlinear operators.

About the authors

Arcady V. Ponosov

Norwegian University of Life Sciences

Email: arkadi@nmbu.no
Doctor of Natural Sciences, Professor of the Institute of Mathematics P.O. Box 5003, №-1432, ˚As 5003, Norway

References

  1. B.N. Sadovskii, “A fixed-point principle”, Funct. Anal. Appl., 1:2 (1967), 151-153.
  2. J. Jacod, J. Memin, “Existence of weak solutions for stochastic differential equations with driving semimartingales”, Stochastics, 4 (1981), 317-337.
  3. A. Ponosov, “Fixed point method in the theory of stochastic differential equations”, Soviet Math. Doklady, 37:2 (1988), 426-429.
  4. J. Appell, P.P. Zabreiko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008, 311 pp.
  5. A. Ponosov, “On the Nemytskii conjecture”, Soviet Math. Doklady, 34:1 (1987), 231-233.
  6. X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing ltd., Chichester, 1997, 366 pp.
  7. B. Шksendal, Stochastic Differential Equations, Universitext, Springer-Verlag Berlin Heidelberg, Berlin, 2013, 379 pp.
  8. A. Ponosov, “Local operators and stochastic differential equations”, Functional Differential Equations, 4:1-2 (1997), 73-89.
  9. G.Di Nunno, B. Шksendal, F. Proske, Malliavin Calculus for Lґevy Processes with Applications to Finance, Universitext, Springer-Verlag Berlin Heidelberg, Berlin, 2009, 418 pp.
  10. D.H. Wagner, “Survey of measurable selection theorems”, SIAM J. Control and Optimization, 15:5 (1977), 859-903.
  11. I. V. Shragin, “Abstract Nemytskii operators are locally defined operators”, Soviet Math. Doklady, 17:2 (1976), 354-357.
  12. A. Ponosov, E. Stepanov, “Atomic operators, random dynamical systems and invariant measures”, St. Petersburg Math. J., 26 (2015), 607-642.
  13. S. G. Krantz, Function Theory of Several Complex Variables: Second Edition. V. 340, AMS Chelsea Publishing, Providence, 1992.
  14. Hu Sze-Tsen, Theory of Retracts, Wayne State University Press, Detroit, 1965, 234 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).