New method for the numerical solution of the Fredholm linear integral equation on a large interval
- Authors: Lemita S.1, Guebbai H.2, Sedka I.2, Aissaoui M.Z.2
 - 
							Affiliations: 
							
- Higher Normal School of Ouargla
 - University May 8, 1945 - Guelma
 
 - Issue: Vol 25, No 132 (2020)
 - Pages: 387-400
 - Section: Articles
 - URL: https://journals.rcsi.science/2686-9667/article/view/294976
 - DOI: https://doi.org/10.20310/2686-9667-2020-25-132-387-400
 - ID: 294976
 
Cite item
Full Text
Abstract
About the authors
Samir Lemita
Higher Normal School of Ouargla
														Email: lem.samir@gmail.com
				                					                																			                								PhD, Assistant Professor				                								B.P. 398, Ennacer St., Ouargla 30000, Algeria						
Hamza Guebbai
University May 8, 1945 - Guelma
														Email: guebaihamza@yahoo.fr
				                					                																			                								Full Professor				                								B.P. 401, Guelma 24000, Algeria						
Ilyes Sedka
University May 8, 1945 - Guelma
														Email: di_sedka@esi.dz
				                					                																			                								Post-Graduate Student				                								B.P. 401, Guelma 24000, Algeria						
Mohamed Zine Aissaoui
University May 8, 1945 - Guelma
														Email: aissaouizine@gmail.com
				                					                																			                								Full Professor				                								B.P. 401, Guelma 24000, Algeria						
References
- W. Li, W. Sun, “Modified Gauss-Seidel type methods and Jacobi type methods for Z -matrices”, Linear Algebra and Its Applications, 317:1 (2000), 227-240.
 - M. S. Muthuvalu, “The preconditioned Gauss-Seidel iterative methods for solving Fredholm integral equations of the second kind”, AIP Conference Proceedings, 1751 (2016), 020001.
 - Y. Saad, Iterative Methods for Sparse Linear Systems, 2-nd ed., Society for Industrial and Applied Mathematics, Siam, 2003, 567 pp.
 - D. K. Salkuyeh, “Generalized Jacobi and Gauss-Seidel methods for solving linear system of equations”, Numer. Math. J. Chinese Univ., 16:2 (2007), 164-170.
 - Y. Zhang, T. Z. Huang, X.P. Liu, “Modified iterative methods for nonnegative matrices and Mmatrices linear systems”, Computers & Mathematics with Applications, 50:10 (2005), 1587-1602.
 - L. Zou, Y. Jiang, “Convergence of The Gauss-Seidel Iterative Method”, Procedia Engineering, 15(2011), 1647-1650
 - S. Lemita, H. Guebbai, “New process to approach linear Fredholm integral equations defined on large interval”, Asian Eur. J. Math., 12:01 (2019), 1950009
 - S. Lemita, H. Guebbai, M. Z. Aissaoui, “Generalized Jacobi method for linear bounded operators system”, Comput. Appl. Math., 37:3 (2018), 3967-3980
 - M. Ahues, A. Largillier, O. Titaud, “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numerical Functional Analysis and Optimization, 22 (2001), 789-814
 - K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, United Kingdom, 1997
 - K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Approach, Springer, New York, 2009
 - M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York, 2001
 
Supplementary files
				
			
					
						
				
									


