New method for the numerical solution of the Fredholm linear integral equation on a large interval

Cover Page

Cite item

Full Text

Abstract

The traditional numerical process to tackle a linear Fredholm integral equation on a large interval is divided into two parts, the first is discretization, and the second is the use of the iterative scheme to approach the solutions of the huge algebraic system. In this paper we propose a new method based on constructing a generalization of the iterative scheme, which is adapted to the system of linear bounded operators. Then we don’t discretize the whole system, but only the diagonal part of the system. This system is built by transforming our integral equation. As discretization we consider the product integration method and the Gauss-Seidel iterative method as iterative scheme. We also prove the convergence of this new method. The numerical tests developed show its effectiveness.

About the authors

Samir Lemita

Higher Normal School of Ouargla

Email: lem.samir@gmail.com
PhD, Assistant Professor B.P. 398, Ennacer St., Ouargla 30000, Algeria

Hamza Guebbai

University May 8, 1945 - Guelma

Email: guebaihamza@yahoo.fr
Full Professor B.P. 401, Guelma 24000, Algeria

Ilyes Sedka

University May 8, 1945 - Guelma

Email: di_sedka@esi.dz
Post-Graduate Student B.P. 401, Guelma 24000, Algeria

Mohamed Zine Aissaoui

University May 8, 1945 - Guelma

Email: aissaouizine@gmail.com
Full Professor B.P. 401, Guelma 24000, Algeria

References

  1. W. Li, W. Sun, “Modified Gauss-Seidel type methods and Jacobi type methods for Z -matrices”, Linear Algebra and Its Applications, 317:1 (2000), 227-240.
  2. M. S. Muthuvalu, “The preconditioned Gauss-Seidel iterative methods for solving Fredholm integral equations of the second kind”, AIP Conference Proceedings, 1751 (2016), 020001.
  3. Y. Saad, Iterative Methods for Sparse Linear Systems, 2-nd ed., Society for Industrial and Applied Mathematics, Siam, 2003, 567 pp.
  4. D. K. Salkuyeh, “Generalized Jacobi and Gauss-Seidel methods for solving linear system of equations”, Numer. Math. J. Chinese Univ., 16:2 (2007), 164-170.
  5. Y. Zhang, T. Z. Huang, X.P. Liu, “Modified iterative methods for nonnegative matrices and Mmatrices linear systems”, Computers & Mathematics with Applications, 50:10 (2005), 1587-1602.
  6. L. Zou, Y. Jiang, “Convergence of The Gauss-Seidel Iterative Method”, Procedia Engineering, 15(2011), 1647-1650
  7. S. Lemita, H. Guebbai, “New process to approach linear Fredholm integral equations defined on large interval”, Asian Eur. J. Math., 12:01 (2019), 1950009
  8. S. Lemita, H. Guebbai, M. Z. Aissaoui, “Generalized Jacobi method for linear bounded operators system”, Comput. Appl. Math., 37:3 (2018), 3967-3980
  9. M. Ahues, A. Largillier, O. Titaud, “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numerical Functional Analysis and Optimization, 22 (2001), 789-814
  10. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, United Kingdom, 1997
  11. K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Approach, Springer, New York, 2009
  12. M. Ahues, A. Largillier, B. V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, New York, 2001

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).