Investigation of periodic solutions of a system of ordinary differential equations with quasi-homogeneous non-linearity

Cover Page

Cite item

Full Text

Abstract

The article considers a system of ordinary differential equations in which the main nonlinear part, which is a quasi-homogeneous mapping, is distinguished. The question of the existence of periodic solutions is investigated. Consideration of a quasi-homogeneous mapping allows us to generalize previously known results on the existence of periodic solutions for a system of ordinary differential equations with the main positively homogeneous non-linearity. An a priori estimate for periodic solutions is proved under the condition that the corresponding unperturbed system of equations with a quasi-homogeneous right-hand side does not have non-zero bounded solutions. Under the conditions of an a priori estimate, the following results were obtained: 1) the invariance of the existence of periodic solutions under continuous change (homotopy) of the main quasi-homogeneous non-linear part was proved; 2) the problem of homotopy classification of two-dimensional quasi-homogeneous mappings satisfying the a priori estimation condition has been solved; 3) a criterion for the existence of periodic solutions for a two-dimensional system of ordinary differential equations with the main quasi-homogeneous non-linearity is proved.

Full Text

Введение

Пусть R n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaCa aaleqabaGaamOBaaaaaaa@39FC@  - пространство n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  -мерных векторов с вещественными координатами, n2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaaikdacaaIUaaaaa@3C34@  Пусть заданы положительные числа ω,ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdCNaaG ilaiabe27aUbaa@3C42@  и вектор α=( α 1 ,, α n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaiIcacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaaISaGaeSOj GSKaaGilaiabeg7aHnaaBaaaleaacaWGUbaabeaakiaaiMcaaaa@43B8@  с положительными координатами. Через P n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=9a8qnaaBaaaleaa caWGUbGaaGilaiabeM8a3bqabaGccaaIOaGaeqySdeMaaGilaiabe2 7aUjaaiMcaaaa@4DBA@  обозначим множество непрерывных отображений P=( P 1 ,, P n ): R 1+n R n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaIOaGaamiuamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaamiuamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI6aGaae OuamaaCaaaleqabaGaaGymaiabgUcaRiaad6gaaaGccqWIMgsycaqG sbWaaWbaaSqabeaacaWGUbaaaOGaaGilaaaa@4A28@  удовлетворяющих условиям

1) ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодичности по t: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiQ daaaa@39C4@   P(t+ω,y)P(t,y), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaey4kaSIaeqyYdCNaaGilaiaadMhacaaIPaGaeyyyIORa amiuaiaaiIcacaWG0bGaaGilaiaadMhacaaIPaGaaGilaaaa@4703@

2) квазиоднородности по y=( y 1 ,, y n ): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaamyEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI6aaaaa@4299@  

P j (t, λ α 1 y 1 ,, λ α n y n ) λ α j +ν P j (t, y 1 ,, y n )λ>0,j= 1,n ¯ ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiabeU7aSnaaCaaa leqabaGaeqySde2aaSbaaeaacaaIXaaabeaaaaGccaWG5bWaaSbaaS qaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacqaH7oaBdaahaaWc beqaaiabeg7aHnaaBaaabaGaamOBaaqabaaaaOGaamyEamaaBaaale aacaWGUbaabeaakiaaiMcacqGHHjIUcqaH7oaBdaahaaWcbeqaaiab eg7aHnaaBaaabaGaamOAaaqabaGaey4kaSIaeqyVd4gaaOGaamiuam aaBaaaleaacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaadMhadaWg aaWcbaGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadMhadaWgaa WcbaGaamOBaaqabaGccaaIPaGaaGzbVlabgcGiIiabeU7aSjaai6da caaIWaGaaGilaiaaywW7caWGQbGaaGypamaanaaabaGaaGymaiaaiY cacaWGUbaaaiaaiUdaaaa@6E34@

а через n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=XrisnaaBaaaleaa caWGUbGaaGilaiabeM8a3bqabaGccaaIOaGaeqySdeMaaGilaiabe2 7aUjaaiMcaaaa@4CFA@  - множество непрерывных отображений f=( f 1 ,, f n ): R 1+n R n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dacaaIOaGaamOzamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaamOzamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI6aGaae OuamaaCaaaleqabaGaaGymaiabgUcaRiaad6gaaaGccqWIMgsycaqG sbWaaWbaaSqabeaacaWGUbaaaOGaaGilaaaa@4A6A@  удовлетворяющих условиям

3) ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодичности по t: MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiQ daaaa@39C4@   f(t+ω,y)f(t,y); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaey4kaSIaeqyYdCNaaGilaiaadMhacaaIPaGaeyyyIORa amOzaiaaiIcacaWG0bGaaGilaiaadMhacaaIPaGaaG4oaaaa@473E@

4) ограниченности на порядок роста по y=( y 1 ,, y n ): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiYcacqWIMaYs caaISaGaamyEamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI6aaaaa@4299@  

lim r+ r ( α j +ν) max 0tω,|y|1 | f j (t, r α 1 y 1 ,, r α n y n )|=0,j= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGYbGaeyOKH4Qaey4kaSIaeyOhIukabeGcbaGaciiBaiaacMga caGGTbaaaiaadkhadaahaaWcbeqaaiabgkHiTiaaiIcacqaHXoqyda WgaaqaaiaadQgaaeqaaiabgUcaRiabe27aUjaaiMcaaaGccaaMb8Ua aGzaVlaaygW7daGfqbqabSqaaiaaicdacqGHKjYOcaWG0bGaeyizIm QaeqyYdCNaaGilaiaaiYhacaWG5bGaaGiFaiabgsMiJkaaigdaaeqa keaaciGGTbGaaiyyaiaacIhaaaGaaGzaVlaaiYhacaWGMbWaaSbaaS qaaiaadQgaaeqaaOGaaGikaiaadshacaaISaGaamOCamaaCaaaleqa baGaeqySde2aaSbaaeaacaaIXaaabeaaaaGccaWG5bWaaSbaaSqaai aaigdaaeqaaOGaaGilaiablAciljaaiYcacaWGYbWaaWbaaSqabeaa cqaHXoqydaWgaaqaaiaad6gaaeqaaaaakiaadMhadaWgaaWcbaGaam OBaaqabaGccaaIPaGaaGiFaiaai2dacaaIWaGaaGilaiaaywW7caWG QbGaaGypamaanaaabaGaaGymaiaaiYcacaWGUbaaaiaai6caaaa@7DFB@

Рассмотрим систему обыкновенных дифференциальных уравнений вида

x (t)=P(t,x(t))+f(t,x(t)),x(t) R n ,tR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGikaiaadshacaaIPaGaaGypaiaadcfacaaIOaGaamiDaiaaiYca caWG4bGaaGikaiaadshacaaIPaGaaGykaiabgUcaRiaadAgacaaIOa GaamiDaiaaiYcacaWG4bGaaGikaiaadshacaaIPaGaaGykaiaaiYca caaMf8UaamiEaiaaiIcacaWG0bGaaGykaiabgIGiolaabkfadaahaa Wcbeqaaiaad6gaaaGccaaISaGaaGzbVlaadshacqGHiiIZcaqGsbGa aGilaaaa@5B23@  (0.1)

где P P n,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@50C9@   f n,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@5021@  Вектор-функцию x C 1 (R; R n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaeOuaiaaiUda caqGsbWaaWbaaSqabeaacaWGUbaaaOGaaGykaaaa@4140@  называем ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическим решением системы (0.1) , если x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@3B62@  удовлетворяет этой системе и x(t+ω)x(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaey4kaSIaeqyYdCNaaGykaiabggMi6kaadIhacaaIOaGa amiDaiaaiMcacaaIUaaaaa@43ED@

В настоящей работе исследованы условия на P P n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@5013@ , обеспечивающие существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений системы уравнений (0.1) при любом f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@ . В системе уравнений (0.1) слагаемое P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  называем главной и квазиоднородной нелинейностью, а f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  считаем возмущением.

Существование периодических решений для систем уравнений вида (0.1) в случае положительно однородного отображения P, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiY caaaa@3992@  когда α=(1,,1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaiIcacaaIXaGaaGilaiablAciljaaiYcacaaIXaGaaGykaiaa iYcaaaa@408C@  исследовано в работах [1, 2] методом априорной оценки и методами вычисления вращения векторных полей. Суть метода априорной оценки состоит в доказательстве ограниченности множества ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений по норме пространства C([0,ω]; R n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaad6gaaaGccaaIPaaaaa@4201@  при предположении, что невозмущенная система уравнений

z (t)=P( t 0 ,z(t)),z(t) R n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOEayaafa GaaGikaiaadshacaaIPaGaaGypaiaadcfacaaIOaGaamiDamaaBaaa leaacaaIWaaabeaakiaaiYcacaWG6bGaaGikaiaadshacaaIPaGaaG ykaiaaiYcacaaMf8UaamOEaiaaiIcacaWG0bGaaGykaiabgIGiolaa bkfadaahaaWcbeqaaiaad6gaaaGccaaISaaaaa@4E47@  (0.2)

при любом фиксированном t 0 [0,ω] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiabeM8a 3jaai2faaaa@407D@  не имеет ненулевых ограниченных решений. В этом случае вполне непрерывное векторное поле

Φ(x)x(t)x(ω) 0 t P(s,x(s))+f(s,x(s)) ds,xC([0,ω]; R n ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhacaaIPaGaeyyyIORaamiEaiaaiIcacaWG0bGaaGykaiab gkHiTiaadIhacaaIOaGaeqyYdCNaaGykaiabgkHiTmaapedabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakmaabmaabaGaamiuaiaaiIca caWGZbGaaGilaiaadIhacaaIOaGaam4CaiaaiMcacaaIPaGaey4kaS IaamOzaiaaiIcacaWGZbGaaGilaiaadIhacaaIOaGaam4CaiaaiMca caaIPaaacaGLOaGaayzkaaGaamizaiaadohacaaISaGaaGzbVlaadI hacqGHiiIZcaWGdbGaaGikaiaaiUfacaaIWaGaaGilaiabeM8a3jaa i2facaaI7aGaaeOuamaaCaaaleqabaGaamOBaaaakiaaiMcacaaISa aaaa@6D52@

не обращается в ноль вне шара x<r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaaiYdacaWGYbaaaa@4195@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R n ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaad6gaaaGccaaIPaGaaGOlaaaa@42B9@  Поэтому, согласно теории векторных полей [3, с. 135], определена целочисленная характеристика γ (Φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdyKaaGykaaaa@3E34@  - вращение векторного поля Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeaaa@3981@  на сфере x=r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaai2dacaWGYbaaaa@4196@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R n ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaad6gaaaGccaaIPaGaaGOlaaaa@42B9@  Если γ (Φ)0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdyKaaGykaiabgcMi5kaa icdacaaISaaaaa@416B@  то согласно принципу ненулевого вращения [3, с. 141] имеет место равенство Φ( x 0 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaaicda aaa@3E54@  при некоторой вектор-функции x 0 C([0,ω]; R n ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgIGiolaadoeacaaIOaGaaG4waiaaicda caaISaGaeqyYdCNaaGyxaiaaiUdacaqGsbWaaWbaaSqabeaacaWGUb aaaOGaaGykaiaaiYcaaaa@4628@  этим самым доказывается существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений.

Рассмотрение квазиоднородного отображения P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  позволяет не только обобщить результаты работ [1, 2], но и уточнить их следующим образом. Если для положительно однородного отображения P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  не при всех возмущениях f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  имеет место априорная оценка ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений, то класс возмущений можно сужать так, что главная нелинейная часть системы уравнений (0.1) окажется квазиоднородным отображением. Например, система двух скалярных уравнений

x 1 (t)=| x 1 (t )| m1 x 1 (t)+ f 1 (t, x 1 (t), x 2 (t)), x 2 (t)= f 2 (t, x 1 (t), x 2 (t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaaceaIXaGbauaaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaa iYhacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPa GaaGiFamaaCaaaleqabaGaamyBaiabgkHiTiaaigdaaaGccaWG4bWa aSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaey4kaSIaam OzamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIha daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaISaGaam iEamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiMca caaISaGaaGzbVlaaywW7caWG4bWaaSbaaSqaaiqaikdagaqbaaqaba GccaaIOaGaamiDaiaaiMcacaaI9aGaamOzamaaBaaaleaacaaIYaaa beaakiaaiIcacaWG0bGaaGilaiaadIhadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiDaiaaiMcacaaISaGaamiEamaaBaaaleaacaaIYaaa beaakiaaiIcacaWG0bGaaGykaiaaiMcacaaISaaaaa@71A4@

где m>1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai6 dacaaIXaGaaGilaaaa@3B32@  не при всех возмущениях f(t, y 1 , y 2 )=( f 1 (t, y 1 , y 2 ), f 2 (t, y 1 , y 2 )), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG0bGaaGilaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGa amyEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaaGikaiaadA gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWG5bWa aSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaaGOmaa qabaGccaaIPaGaaGilaiaadAgadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDaiaaiYcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilai aadMhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGykaiaaiYcaaaa@573E@  удовлетворяющих условию

lim | y 1 |+| y 2 | | y 1 |+| y 2 | m max 0tω |f(t, y 1 , y 2 )|=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaI8bGaamyEamaaBaaabaGaaGymaaqabaGaaGiFaiabgUcaRiaa iYhacaWG5bWaaSbaaeaacaaIYaaabeaacaaI8bGaeyOKH4QaeyOhIu kabeGcbaGaciiBaiaacMgacaGGTbaaamaabmaabaGaaGiFaiaadMha daWgaaWcbaGaaGymaaqabaGccaaI8bGaey4kaSIaaGiFaiaadMhada WgaaWcbaGaaGOmaaqabaGccaaI8baacaGLOaGaayzkaaWaaWbaaSqa beaacqGHsislcaWGTbaaaOWaaybuaeqaleaacaaIWaGaeyizImQaam iDaiabgsMiJkabeM8a3bqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI 8bGaamOzaiaaiIcacaWG0bGaaGilaiaadMhadaWgaaWcbaGaaGymaa qabaGccaaISaGaamyEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI 8bGaaGypaiaaicdacaaISaaaaa@6AF9@

допускает априорную оценку ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений. Если сужать класс возмущений с дополнительным условием

f 2 (t, y 1 , y 2 )=| y 2 | q1 y 2 + f ˜ 2 (t, y 1 , y 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadMhadaWgaaWc baGaaGymaaqabaGccaaISaGaamyEamaaBaaaleaacaaIYaaabeaaki aaiMcacaaI9aGaaGiFaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaI 8bWaaWbaaSqabeaacaWGXbGaeyOeI0IaaGymaaaakiaadMhadaWgaa WcbaGaaGOmaaqabaGccqGHRaWkceWGMbGbaGaadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaamiDaiaaiYcacaWG5bWaaSbaaSqaaiaaigdaae qaaOGaaGilaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGil aaaa@5642@

Где

1<q<m, lim ρ ρ q(m1)/(q1) max 0tω,| y 1 |+| y 2 |1 | f ˜ 2 (t,ρ y 1 , ρ (m1)/(q1) y 2 )|=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY dacaWGXbGaaGipaiaad2gacaaISaGaaGzbVpaawafabeWcbaGaeqyW diNaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaaaiabeg 8aYnaaCaaaleqabaGaeyOeI0IaamyCaiaaiIcacaWGTbGaeyOeI0Ia aGymaiaaiMcacaaIVaGaaGikaiaadghacqGHsislcaaIXaGaaGykaa aakiaaygW7caaMb8UaaGzaVpaawafabeWcbaGaaGimaiabgsMiJkaa dshacqGHKjYOcqaHjpWDcaaISaGaaGjcVlaaiYhacaWG5bWaaSbaae aacaaIXaaabeaacaaI8bGaey4kaSIaaGiFaiaadMhadaWgaaqaaiaa ikdaaeqaaiaaiYhacqGHKjYOcaaIXaaabeGcbaGaciyBaiaacggaca GG4baaaiaaygW7caaI8bGabmOzayaaiaWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadshacaaISaGaeqyWdiNaamyEamaaBaaaleaacaaIXa aabeaakiaaiYcacqaHbpGCdaahaaWcbeqaaiaaiIcacaWGTbGaeyOe I0IaaGymaiaaiMcacaaIVaGaaGikaiaadghacqGHsislcaaIXaGaaG ykaaaakiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGiFaiaa i2dacaaIWaGaaGilaaaa@8B9B@

то в результате получаем систему уравнений вида (0.1) с квазиоднородным отображением P( y 1 , y 2 )=(| y 1 | m1 y 1 ,| y 2 | q1 y 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMhadaWgaaWc baGaaGOmaaqabaGccaaIPaGaaGypaiaaiIcacaaI8bGaamyEamaaBa aaleaacaaIXaaabeaakiaaiYhadaahaaWcbeqaaiaad2gacqGHsisl caaIXaaaaOGaamyEamaaBaaaleaacaaIXaaabeaakiaaiYcacaaI8b GaamyEamaaBaaaleaacaaIYaaabeaakiaaiYhadaahaaWcbeqaaiaa dghacqGHsislcaaIXaaaaOGaamyEamaaBaaaleaacaaIYaaabeaaki aaiMcacaaISaaaaa@53EA@  где α=(1,(m1)/(q1)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaiIcacaaIXaGaaGilaiaaiIcacaWGTbGaeyOeI0IaaGymaiaa iMcacaaIVaGaaGikaiaadghacqGHsislcaaIXaGaaGykaiaaiMcaca aISaaaaa@46B4@   ν=m1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG ypaiaad2gacqGHsislcaaIXaGaaGOlaaaa@3DD8@

Кроме того, к системе уравнений вида (0.1) с квазиоднородной нелинейностью P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  приводятся многие системы нелинейных обыкновенных дифференциальных уравнений с производными высоких порядков. Такие системы уравнений представляют интерес при исследовании нелинейных краевых задач для дифференциальных уравнений в частных производных с применением схемы Фаэдо-Галеркина [4, c. 118--132].

В настоящей работе доказана ограниченность множества ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений системы уравнений (0.1) по норме пространства C([0,ω]; R n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaad6gaaaGccaaIPaaaaa@4201@  (априорная оценка) в предположении, что P P n,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@50C9@   f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@  и система уравнений (0.2) не имеет ненулевых ограниченных решений при любом фиксированном t 0 [0,ω]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiabeM8a 3jaai2facaaIUaaaaa@4135@  Далее, в условиях априорной оценки получены следующие результаты: 1) доказана инвариантность существования периодических решений при непрерывном изменении (гомотопии) главной квазиоднородной нелинейной части; 2) решена задача гомотопической классификации двумерных квазиоднородных отображений, удовлетворяющих условиям априорной оценки; 3) доказан критерий существования периодических решений для двумерной системы обыкновенных дифференциальных уравнений с главной квазиоднородной нелинейностью.

Существование периодических решений для систем нелинейных обыкновенных дифференциальных уравнений исследовано в многочисленных работах других авторов. Можно отметить работы [5, 6], где применяются идеи и методы, близкие к настоящей работе. Например, в работе [6] получены достаточные условия, которым должна удовлетворять асимптотически устойчивая в целом автономная система дифференциальных уравнений, заданная в R n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaCa aaleqabaGaamOBaaaakiaaiYcaaaa@3ABC@  чтобы при любом ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическом ее возмущении она имела ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение.

1. Основные результаты

Определение 1.1. Скажем, что для ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений системы уравнений (0.1) имеет место априорная оценка, если множество ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений системы уравнений (0.1) пусто или ограничено по норме пространства C([0,ω]; R n ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaad6gaaaGccaaIPaGaaGOlaaaa@42B9@  

Справедлива следующая теорема. 

Теорема 1.1. Пусть P P n,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@50C9@   f n,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@501F@  и при любом фиксированном t 0 [0,ω] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiabeM8a 3jaai2faaaa@407D@  система уравнений (0.2) не имеет ненулевых ограниченных решений. Тогда имеет место априорная оценка для ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений системы уравнений (0.1).

Обозначим через P n,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=9a8qnaaDaaaleaa caWGUbGaaGilaiabeM8a3bqaaiaaicdaaaGccaaIOaGaeqySdeMaaG ilaiabe27aUjaaiMcaaaa@4E75@  множество отображений P P n,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@50C9@  удовлетворяющих условиям теоремы 1.1.

Определение 1.2. Два отображения P 1 , P 2 P n,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaaGymaaaakiaaiYcacaWGqbWaaWbaaSqabeaacaaIYaaa aOGaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaG qbaiab=9a8qnaaDaaaleaacaWGUbGaaGilaiabeM8a3bqaaiaaicda aaGccaaIOaGaeqySdeMaaGilaiabe27aUjaaiMcaaaa@543E@  назовем гомотопными, если существует семейство отображений P ˜ (,,λ) P n,ω 0 (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaeq4UdWMaaGykaiab gIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacq WFpapudaqhaaWcbaGaamOBaiaaiYcacqaHjpWDaeaacaaIWaaaaOGa aGikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@5AAC@   λ[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2facaaISaaaaa@3FEC@  непрерывно зависящее от λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@39BB@  и такое, что P ˜ (,,0)= P 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaaGimaiaaiMcacaaI 9aGaamiuamaaCaaaleqabaGaaGymaaaakiaaiYcaaaa@444E@   P ˜ (,,1)= P 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaaGymaiaaiMcacaaI 9aGaamiuamaaCaaaleqabaGaaGOmaaaakiaai6caaaa@4452@  

Верна следующая теорема об инвариантности существования ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений при гомотопии.

Теорема 1.2. Пусть отображения P 1 , P 2 P n,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaaGymaaaakiaaiYcacaWGqbWaaWbaaSqabeaacaaIYaaa aOGaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaG qbaiab=9a8qnaaDaaaleaacaWGUbGaaGilaiabeM8a3bqaaiaaicda aaGccaaIOaGaeqySdeMaaGilaiabe27aUjaaiMcaaaa@543E@  гомотопны, и при P= P 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGqbWaaWbaaSqabeaacaaIXaaaaaaa@3B60@  и любом f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@  система уравнений (0.1) имеет ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение. Тогда система уравнений (0.1) при P= P 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGqbWaaWbaaSqabeaacaaIYaaaaaaa@3B61@  и любом f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@  также имеет ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение.

В связи с теоремой 1.2 рассмотрим следующие задачи:

  • описание гомотопических классов множества P n,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=9a8qnaaDaaaleaa caWGUbGaaGilaiabeM8a3bqaaiaaicdaaaGccaaIOaGaeqySdeMaaG ilaiabe27aUjaaiMcaaaa@4E75@  (задача гомотопической классификации);
  • существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения в гомотопических классах.

Исследуем эти задачи при n=2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaGaaGOlaaaa@3B35@

Для P=( P 1 , P 2 ) P 2,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaIOaGaamiuamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGqbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiabgIGioprr1ngBPrMrYf2A0v NCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFpapudaqhaaWcbaGaaGOm aiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaGikaiabeg7aHjaaiYcacq aH9oGBcaaIPaaaaa@5706@  существует единственная функция θ P (t,s), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMca caaISaaaaa@3F8A@  непрерывно зависящая от аргументов t,sR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacaWGZbGaeyicI4SaaeOuaaaa@3D07@  и удовлетворяющая условиям: θ P (0,0)[0,2π), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaaicdacaaISaGaaGimaiaaiMca cqGHiiIZcaaIBbGaaGimaiaaiYcacaaIYaGaeqiWdaNaaGykaiaaiY caaaa@4612@  

P 1 (t,coss,sins)=|P(t,coss,sins)|cos( θ P (t,s)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiGacogacaGGVbGa ai4CaiaadohacaaISaGaci4CaiaacMgacaGGUbGaam4CaiaaiMcaca aI9aGaaGiFaiaadcfacaaIOaGaamiDaiaaiYcaciGGJbGaai4Baiaa cohacaWGZbGaaGilaiGacohacaGGPbGaaiOBaiaadohacaaIPaGaaG iFaiGacogacaGGVbGaai4CaiaaiIcacqaH4oqCdaWgaaWcbaGaamiu aaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaiaaiMcacaaISa aaaa@5FFA@

P 2 (t,coss,sins)=|P(t,coss,sins)|sin( θ P (t,s)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGilaiGacogacaGGVbGa ai4CaiaadohacaaISaGaci4CaiaacMgacaGGUbGaam4CaiaaiMcaca aI9aGaaGiFaiaadcfacaaIOaGaamiDaiaaiYcaciGGJbGaai4Baiaa cohacaWGZbGaaGilaiGacohacaGGPbGaaiOBaiaadohacaaIPaGaaG iFaiGacohacaGGPbGaaiOBaiaaiIcacqaH4oqCdaWgaaWcbaGaamiu aaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaiaaiMcacaaIUa aaaa@6002@

Такую функцию θ P (t,s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMca aaa@3ED4@  называют угловой.

Определим числа

γ 0 (P):= 1 2π θ P (t,s+2π) θ P (t,s) , γ 1 (P):= 1 2π θ P (t+ω,s) θ P (t,s) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGOoaiaai2da daWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaabmaabaGaeqiUde 3aaSbaaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4Caiab gUcaRiaaikdacqaHapaCcaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaai aadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMcaaiaawIca caGLPaaacaaISaGaaGzbVlabeo7aNnaaBaaaleaacaaIXaaabeaaki aaiIcacaWGqbGaaGykaiaaiQdacaaI9aWaaSaaaeaacaaIXaaabaGa aGOmaiabec8aWbaadaqadaqaaiabeI7aXnaaBaaaleaacaWGqbaabe aakiaaiIcacaWG0bGaey4kaSIaeqyYdCNaaGilaiaadohacaaIPaGa eyOeI0IaeqiUde3aaSbaaSqaaiaadcfaaeqaaOGaaGikaiaadshaca aISaGaam4CaiaaiMcaaiaawIcacaGLPaaacaaIUaaaaa@746E@

Эти числа целые и не зависят от t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  и s. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai6 caaaa@39B7@

Введем функции

Q 1 α, p 0 , p 1 (t, y 1 , y 2 ):=|y | *,α α 1 +ν Re( e i2π p 1 t/ω ( y 1 |y | *,α α 1 +i y 2 |y | *,α α 2 ) p 0 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIXaaabaGaeqySdeMaaGilaiaadchadaWgaaqaaiaaicda aeqaaiaaiYcacaWGWbWaaSbaaeaacaaIXaaabeaaaaGccaaIOaGaam iDaiaaiYcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGOoaiaai2dacaaI8bGaam yEaiaaiYhadaqhaaWcbaGaaGOkaiaaiYcacqaHXoqyaeaacqaHXoqy daWgaaqaaiaaigdaaeqaaiabgUcaRiabe27aUbaakiaadkfacaWGLb GaaGikaiaadwgadaahaaWcbeqaaiaadMgacaaIYaGaeqiWdaNaamiC amaaBaaabaGaaGymaaqabaGaamiDaiaai+cacqaHjpWDaaGccaaIOa WaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGiFaiaa dMhacaaI8bWaa0baaSqaaiaaiQcacaaISaGaeqySdegabaGaeqySde 2aaSbaaeaacaaIXaaabeaaaaaaaOGaey4kaSIaamyAamaalaaabaGa amyEamaaBaaaleaacaaIYaaabeaaaOqaaiaaiYhacaWG5bGaaGiFam aaDaaaleaacaaIQaGaaGilaiabeg7aHbqaaiabeg7aHnaaBaaabaGa aGOmaaqabaaaaaaakiaaiMcadaahaaWcbeqaaiaadchadaWgaaqaai aaicdaaeqaaaaakiaaiMcacaaISaaaaa@7D88@

Q 2 α, p 0 , p 1 (t, y 1 , y 2 ):=|y | *,α α 1 +ν Im( e i2π p 1 t/ω ( y 1 |y | *,α α 1 +i y 2 |y | *,α α 2 ) p 0 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIYaaabaGaeqySdeMaaGilaiaadchadaWgaaqaaiaaicda aeqaaiaaiYcacaWGWbWaaSbaaeaacaaIXaaabeaaaaGccaaIOaGaam iDaiaaiYcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMha daWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGOoaiaai2dacaaI8bGaam yEaiaaiYhadaqhaaWcbaGaaGOkaiaaiYcacqaHXoqyaeaacqaHXoqy daWgaaqaaiaaigdaaeqaaiabgUcaRiabe27aUbaakiaadMeacaWGTb GaaGikaiaadwgadaahaaWcbeqaaiaadMgacaaIYaGaeqiWdaNaamiC amaaBaaabaGaaGymaaqabaGaamiDaiaai+cacqaHjpWDaaGccaaIOa WaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGiFaiaa dMhacaaI8bWaa0baaSqaaiaaiQcacaaISaGaeqySdegabaGaeqySde 2aaSbaaeaacaaIXaaabeaaaaaaaOGaey4kaSIaamyAamaalaaabaGa amyEamaaBaaaleaacaaIYaaabeaaaOqaaiaaiYhacaWG5bGaaGiFam aaDaaaleaacaaIQaGaaGilaiabeg7aHbqaaiabeg7aHnaaBaaabaGa aGOmaaqabaaaaaaakiaaiMcadaahaaWcbeqaaiaadchadaWgaaqaai aaicdaaeqaaaaakiaaiMcacaaISaaaaa@7D88@

где i= 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dadaGcaaqaaiabgkHiTiaaigdaaSqabaGccaaISaaaaa@3C3F@   p 0 , p 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaakiaaiYcacaWGWbWaaSbaaSqaaiaaigdaaeqa aaaa@3C7E@  - целые числа, |y | *,α =λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hacaaI8bWaaSbaaSqaaiaaiQcacaaISaGaeqySdegabeaakiaai2da cqaH7oaBaaa@40CB@  если y=( λ α 1 coss, λ α 2 sins), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaaIOaGaeq4UdW2aaWbaaSqabeaacqaHXoqydaWgaaqaaiaaigda aeqaaaaakiGacogacaGGVbGaai4CaiaadohacaaISaGaeq4UdW2aaW baaSqabeaacqaHXoqydaWgaaqaaiaaikdaaeqaaaaakiGacohacaGG PbGaaiOBaiaadohacaaIPaGaaGilaaaa@4D05@   λ0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey yzImRaaGimaiaai6caaaa@3CF3@  Легко проверить, что

Q α, p 0 , p 1 = Q 1 α, p 0 , p 1 , Q 2 α, p 0 , p 1 P 2,ω (α,ν), θ Q α, p 0 , p 1 (t,s)= p 0 s+ 2π p 1 ω t, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGaeqySdeMaaGilaiaadchadaWgaaqaaiaaicdaaeqaaiaa iYcacaWGWbWaaSbaaeaacaaIXaaabeaaaaGccaaI9aWaaeWaaeaaca WGrbWaa0baaSqaaiaaigdaaeaacqaHXoqycaaISaGaamiCamaaBaaa baGaaGimaaqabaGaaGilaiaadchadaWgaaqaaiaaigdaaeqaaaaaki aaiYcacaWGrbWaa0baaSqaaiaaikdaaeaacqaHXoqycaaISaGaamiC amaaBaaabaGaaGimaaqabaGaaGilaiaadchadaWgaaqaaiaaigdaae qaaaaaaOGaayjkaiaawMcaaiabgIGioprr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuaacqWFpapudaWgaaWcbaGaaGOmaiaaiY cacqaHjpWDaeqaaOGaaGikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGa aGilaiaaywW7caaMf8UaeqiUde3aaSbaaSqaaiaadgfadaahaaqabe aacqaHXoqycaaISaGaamiCamaaBaaabaGaaGimaaqabaGaaGilaiaa dchadaWgaaqaaiaaigdaaeqaaaaaaeqaaOGaaGikaiaadshacaaISa Gaam4CaiaaiMcacaaI9aGaamiCamaaBaaaleaacaaIWaaabeaakiaa dohacqGHRaWkdaWcaaqaaiaaikdacqaHapaCcaWGWbWaaSbaaSqaai aaigdaaeqaaaGcbaGaeqyYdChaaiaadshacaaISaaaaa@888E@

γ 0 ( Q α, p 0 , p 1 )= p 0 , γ 1 ( Q α, p 0 , p 1 )= p 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadgfadaahaaWcbeqaaiabeg7a HjaaiYcacaWGWbWaaSbaaeaacaaIWaaabeaacaaISaGaamiCamaaBa aabaGaaGymaaqabaaaaOGaaGykaiaai2dacaWGWbWaaSbaaSqaaiaa icdaaeqaaOGaaGilaiaaywW7caaMf8Uaeq4SdC2aaSbaaSqaaiaaig daaeqaaOGaaGikaiaadgfadaahaaWcbeqaaiabeg7aHjaaiYcacaWG WbWaaSbaaeaacaaIWaaabeaacaaISaGaamiCamaaBaaabaGaaGymaa qabaaaaOGaaGykaiaai2dacaWGWbWaaSbaaSqaaiaaigdaaeqaaOGa aGOlaaaa@5955@

Имеют место следующие теоремы.

Теорема 1.3. Пусть P P 2,ω 0 (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@514F@  Тогда

а) γ 0 (P)1; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaeyizImQaaGym aiaaiUdaaaa@400D@

б) если γ 0 (P)=1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGypaiaaigda caaISaaaaa@3F10@  то P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  гомотопно одному из отображений ± Q α,1,0 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyySaeRaam yuamaaCaaaleqabaGaeqySdeMaaGilaiaaigdacaaISaGaaGimaaaa kiaaiUdaaaa@4047@

в) если γ 0 (P)<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGipaiaaigda caaISaaaaa@3F0F@  то P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  гомотопно Q α, p 0 , p 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGaeqySdeMaaGilaiaadchadaWgaaqaaiaaicdaaeqaaiaa iYcacaWGWbWaaSbaaeaacaaIXaaabeaaaaGccaaISaaaaa@4076@  где p 0 = γ 0 (P), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiuaiaaiMcacaaISaaaaa@403A@   p 1 = γ 1 (P). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiuaiaaiMcacaaIUaaaaa@403E@  

Теорема 1.4. Пусть P P 2,ω 0 (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@514F@  Тогда условие γ 0 (P)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaeyiyIKRaaGim aaaa@3F59@  достаточно для существования ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы (0.1) при любом f 2,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@4FE8@  а при выполнении дополнительного условия ν>|( α 1 α 2 )sign( γ 1 (P))| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG OpaiaaiYhacaaIOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaabohacaWGPb Gaam4zaiaad6gacaaIOaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadcfacaaIPaGaaGykaiaaiYhaaaa@4E00@  условие γ 0 (P)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaeyiyIKRaaGim aaaa@3F59@  еще и необходимо для существования ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы (0.1) при любом f 2,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@4FEA@  

Теоремы 1.3, 1.4 доказаны по схеме работы [7].

Следствие 1.1 Если P P 2,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaaaaa@5097@  и ν>|( α 1 α 2 )sign( γ 1 (P))|, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG OpaiaaiYhacaaIOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaabohacaWGPb Gaam4zaiaad6gacaaIOaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadcfacaaIPaGaaGykaiaaiYhacaaISaaaaa@4EB6@  то условие γ 0 (P)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaeyiyIKRaaGim aaaa@3F59@  необходимо и достаточно для существования ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы уравнений (0.1) при любом f 2,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@4FEA@

2. Доказательства основных результатов

В этом параграфе приведем доказательства всех сформулированных выше теорем, а также связанных с ними утверждений.

2.1. Теорема 1.1

Доказательство теоремы 1.1. Предположим, что существует неограниченная последовательность ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений x k (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaaa@3D3E@   k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC3@  системы уравнений (0.1). Рассмотрим вектор-функции y k (t)=( y k1 (t),, y kn (t )) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGa amyEamaaBaaaleaacaWGRbGaaGymaaqabaGccaaIOaGaamiDaiaaiM cacaaISaGaeSOjGSKaaGilaiaadMhadaWgaaWcbaGaam4Aaiaad6ga aeqaaOGaaGikaiaadshacaaIPaGaaGykamaaCaaaleqabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFKksLaaGccaaI Saaaaa@584C@   k=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E79@  где

y kj (t)= r k α j x kj ( t k + r k ν t),j= 1,n ¯ ,tR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aGa amOCamaaDaaaleaacaWGRbaabaGaeyOeI0IaeqySde2aaSbaaeaaca WGQbaabeaaaaGccaWG4bWaaSbaaSqaaiaadUgacaWGQbaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamOCamaaDa aaleaacaWGRbaabaGaeyOeI0IaeqyVd4gaaOGaamiDaiaaiMcacaaI SaGaaGzbVlaadQgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaad6gaaa GaaGilaiaaywW7caWG0bGaeyicI4SaaeOuaiaaiYcaaaa@5DE8@

r k := max 0tω | x k (t )| α =| x k ( t k )| α ,|z | α := ( z 1 2 ) 1/ α 1 ++ ( z n 2 ) 1/ α n 1/2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGRbaabeaakiaaiQdacaaI9aWaaybuaeqaleaacaaIWaGa eyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2gacaGGHbGaai iEaaaacaaI8bGaamiEamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG 0bGaaGykaiaaiYhadaWgaaWcbaGaeqySdegabeaakiaai2dacaaI8b GaamiEamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqa aiaadUgaaeqaaOGaaGykaiaaiYhadaWgaaWcbaGaeqySdegabeaaki aaiYcacaaMf8UaaGzbVlaaiYhacaWG6bGaaGiFamaaBaaaleaacqaH XoqyaeqaaOGaaGOoaiaai2dadaqadaqaaiaaiIcacaWG6bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaaGykamaaCaaaleqabaGaaGymaiaa i+cacqaHXoqydaWgaaqaaiaaigdaaeqaaaaakiabgUcaRiablAcilj abgUcaRiaaiIcacaWG6bWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGa aGykamaaCaaaleqabaGaaGymaiaai+cacqaHXoqydaWgaaqaaiaad6 gaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+ca caaIYaaaaOGaaGOlaaaa@7B4D@

Для вектор-функций y k (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaaa@3D3F@   k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC3@  имеем

y k (t)=P( t k + r k ν t, y k (t))+ g k (t),| y k (t )| α | y k (0)| α =1,tR,k=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaaceWGRbGbauaaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaa dcfacaaIOaGaamiDamaaBaaaleaacaWGRbaabeaakiabgUcaRiaadk hadaqhaaWcbaGaam4AaaqaaiabgkHiTiabe27aUbaakiaadshacaaI SaGaamyEamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykai aaiMcacqGHRaWkcaWGNbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaa dshacaaIPaGaaGilaiaaywW7caaI8bGaamyEamaaBaaaleaacaWGRb aabeaakiaaiIcacaWG0bGaaGykaiaaiYhadaWgaaWcbaGaeqySdega beaakiabgsMiJkaaiYhacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaG ikaiaaicdacaaIPaGaaGiFamaaBaaaleaacqaHXoqyaeqaaOGaaGyp aiaaigdacaaISaGaaGzbVlaadshacqGHiiIZcaqGsbGaaGilaiaayw W7caWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYscaaI Saaaaa@772B@

где

g kj (t)= r k α j ν f j ( t k + r k ν t, r k α 1 y 1 (t),, r k α n y n (t)),j= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aGa amOCamaaDaaaleaacaWGRbaabaGaeyOeI0IaeqySde2aaSbaaeaaca WGQbaabeaacqGHsislcqaH9oGBaaGccaWGMbWaaSbaaSqaaiaadQga aeqaaOGaaGikaiaadshadaWgaaWcbaGaam4AaaqabaGccqGHRaWkca WGYbWaa0baaSqaaiaadUgaaeaacqGHsislcqaH9oGBaaGccaWG0bGa aGilaiaadkhadaqhaaWcbaGaam4Aaaqaaiabeg7aHnaaBaaabaGaaG ymaaqabaaaaOGaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 0bGaaGykaiaaiYcacqWIMaYscaaISaGaamOCamaaDaaaleaacaWGRb aabaGaeqySde2aaSbaaeaacaWGUbaabeaaaaGccaWG5bWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiaaiYcacaaMf8 UaamOAaiaai2dadaqdaaqaaiaaigdacaaISaGaamOBaaaacaaIUaaa aa@6F65@

Переходя к пределу и учитывая условие 4), получаем

y 0 (t)=P( t 0 , y 0 (t)),| y 0 (t )| α | y 0 (0)| α =1,tR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaaceaIWaGbauaaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaa dcfacaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG5b WaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiaa iYcacaaMf8UaaGiFaiaadMhadaWgaaWcbaGaaGimaaqabaGccaaIOa GaamiDaiaaiMcacaaI8bWaaSbaaSqaaiabeg7aHbqabaGccqGHKjYO caaI8bGaamyEamaaBaaaleaacaaIWaaabeaakiaaiIcacaaIWaGaaG ykaiaaiYhadaWgaaWcbaGaeqySdegabeaakiaai2dacaaIXaGaaGil aiaaywW7caWG0bGaeyicI4SaaeOuaiaai6caaaa@622F@

Пришли к противоречию.

2.1. Теорема 1.2

Пусть отображения P 1 , P 2 P n,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaaGymaaaakiaaiYcacaWGqbWaaWbaaSqabeaacaaIYaaa aOGaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaG qbaiab=9a8qnaaDaaaleaacaWGUbGaaGilaiabeM8a3bqaaiaaicda aaGccaaIOaGaeqySdeMaaGilaiabe27aUjaaiMcaaaa@543E@  гомотопны и P ˜ (,,λ) P n,ω 0 (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaeq4UdWMaaGykaiab gIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacq WFpapudaqhaaWcbaGaamOBaiaaiYcacqaHjpWDaeaacaaIWaaaaOGa aGikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@5AAC@   λ[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3F36@  - непрерывная линия (путь), соединяющая P 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaaGymaaaaaaa@39C4@  и P 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaCa aaleqabaGaaGOmaaaakiaaiYcaaaa@3A85@   P ˜ (,,0)= P 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaaGimaiaaiMcacaaI 9aGaamiuamaaCaaaleqabaGaaGymaaaakiaaiYcaaaa@444E@   P ˜ (,,1)= P 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaaGymaiaaiMcacaaI 9aGaamiuamaaCaaaleqabaGaaGOmaaaakiaai6caaaa@4452@  Проверим справедливость следующей леммы.

Лемма 2.1. Существует σ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG Opaiaaicdaaaa@3B4C@  такое, что для любой ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодической вектор-функции x C 1 (R; R n ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaeOuaiaaiUda caqGsbWaaWbaaSqabeaacaWGUbaaaOGaaGykaiaaiYcaaaa@41F6@  удовлетворяющей условию max{|x(t )| α :0tω}> σ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bGaaG4EaiaaiYhacaWG4bGaaGikaiaadshacaaIPaGaaGiF amaaBaaaleaacqaHXoqyaeqaaOGaaGOoaiaaicdacqGHKjYOcaWG0b GaeyizImQaeqyYdCNaaGyFaiaai6dacqaHdpWCdaahaaWcbeqaaiab gkHiTiaaigdaaaGccaaISaaaaa@50F1@  верна оценка

max 0tω x j 0 '(t) P ˜ j 0 (t,x(t),λ) >σ max 0tω |x(t )| α α j 0 +ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2ga caGGHbGaaiiEaaaadaabdaqaaiaadIhadaWgaaWcbaGaamOAamaaBa aabaGaaGimaaqabaaabeaakiaaiEcacaaIOaGaamiDaiaaiMcacqGH sislceWGqbGbaGaadaWgaaWcbaGaamOAamaaBaaabaGaaGimaaqaba aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIOaGaamiDaiaaiMca caaISaGaeq4UdWMaaGykaaGaay5bSlaawIa7aiaai6dacqaHdpWCda GfqbqabSqaaiaaicdacqGHKjYOcaWG0bGaeyizImQaeqyYdChabeGc baGaciyBaiaacggacaGG4baaaiaaiYhacaWG4bGaaGikaiaadshaca aIPaGaaGiFamaaDaaaleaacqaHXoqyaeaacqaHXoqydaWgaaqaaiaa dQgadaWgaaqaaiaaicdaaeqaaaqabaGaey4kaSIaeqyVd4gaaaaa@7245@

при некотором j 0 = j 0 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa aaleaacaaIWaaabeaakiaai2dacaWGQbWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadIhacaaIPaaaaa@3EEE@  и любом значении λ[0,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2facaaIUaaaaa@3FEE@  

Доказательство. Предположим, что такое σ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG Opaiaaicdaaaa@3B4C@  не существует. Тогда найдутся последовательности λ k [0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaeyicI4SaaG4waiaaicdacaaISaGaaGym aiaai2facaaISaaaaa@4112@   x k C 1 (R; R n ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiabgIGiolaadoeadaahaaWcbeqaaiaaigda aaGccaaIOaGaaeOuaiaaiUdacaqGsbWaaWbaaSqabeaacaWGUbaaaO GaaGykaiaaiYcaaaa@431C@   k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC3@  такие, что

x k (t+ω) x k (t), r k := max 0tω | x k (t )| α =| x k ( t k )| α >k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaey4kaSIaeqyYdCNaaGyk aiabggMi6kaadIhadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDai aaiMcacaaISaGaaGzbVlaaywW7caWGYbWaaSbaaSqaaiaadUgaaeqa aOGaaGOoaiaai2dadaGfqbqabSqaaiaaicdacqGHKjYOcaWG0bGaey izImQaeqyYdChabeGcbaGaciyBaiaacggacaGG4baaaiaaiYhacaWG 4bWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaGaaGiFam aaBaaaleaacqaHXoqyaeqaaOGaaGypaiaaiYhacaWG4bWaaSbaaSqa aiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaam4AaaqabaGcca aIPaGaaGiFamaaBaaaleaacqaHXoqyaeqaaOGaaGOpaiaadUgacaaI Saaaaa@6C5C@

max 0tω x kj '(t) P ˜ j (t, x k (t), λ k ) 1 k r k α j +ν ,j= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2ga caGGHbGaaiiEaaaadaabdaqaaiaadIhadaWgaaWcbaGaam4AaiaadQ gaaeqaaOGaaG4jaiaaiIcacaWG0bGaaGykaiabgkHiTiqadcfagaac amaaBaaaleaacaWGQbaabeaakiaaiIcacaWG0bGaaGilaiaadIhada WgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcacaaISaGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaaGykaaGaay5bSlaawIa7aiabgs MiJoaalaaabaGaaGymaaqaaiaadUgaaaGaamOCamaaDaaaleaacaWG RbaabaGaeqySde2aaSbaaeaacaWGQbaabeaacqGHRaWkcqaH9oGBaa GccaaISaGaaGzbVlaadQgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaa d6gaaaGaaGOlaaaa@6BA5@

Рассмотрим вектор-функции y k (t)=( y k1 (t),, y kn (t )) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGa amyEamaaBaaaleaacaWGRbGaaGymaaqabaGccaaIOaGaamiDaiaaiM cacaaISaGaeSOjGSKaaGilaiaadMhadaWgaaWcbaGaam4Aaiaad6ga aeqaaOGaaGikaiaadshacaaIPaGaaGykamaaCaaaleqabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFKksLaaGccaaI Saaaaa@584C@   k=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@3E79@  где

y kj (t)= r k α i x kj ( t k + r k ν t),j= 1,n ¯ ,tR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aGa amOCamaaDaaaleaacaWGRbaabaGaeyOeI0IaeqySde2aaSbaaeaaca WGPbaabeaaaaGccaWG4bWaaSbaaSqaaiaadUgacaWGQbaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamOCamaaDa aaleaacaWGRbaabaGaeyOeI0IaeqyVd4gaaOGaamiDaiaaiMcacaaI SaGaaGzbVlaadQgacaaI9aWaa0aaaeaacaaIXaGaaGilaiaad6gaaa GaaGilaiaaywW7caWG0bGaeyicI4SaaeOuaiaai6caaaa@5DE9@

Для вектор-функций y k (t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaaa@3D3F@   k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC3@  имеем

y kj '(t)= P j ( t k + r k ν t, y k (t), λ k )+ g kj (t),j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbGaamOAaaqabaGccaaINaGaaGikaiaadshacaaIPaGa aGypaiaadcfadaWgaaWcbaGaamOAaaqabaGccaaIOaGaamiDamaaBa aaleaacaWGRbaabeaakiabgUcaRiaadkhadaqhaaWcbaGaam4Aaaqa aiabgkHiTiabe27aUbaakiaadshacaaISaGaamyEamaaBaaaleaaca WGRbaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacqaH7oaBdaWgaaWc baGaam4AaaqabaGccaaIPaGaey4kaSIaam4zamaaBaaaleaacaWGRb GaamOAaaqabaGccaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaadQga caaI9aWaa0aaaeaacaaIXaGaaGilaiaad6gaaaGaaGilaaaa@613A@

| y k (t )| α | y k (0)| α =1,| g kj (t)| 1 k ,tR,k=1,2,, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiaaiMcacaaI8bWa aSbaaSqaaiabeg7aHbqabaGccqGHKjYOcaaI8bGaamyEamaaBaaale aacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiaaiYhadaWgaaWcbaGa eqySdegabeaakiaai2dacaaIXaGaaGilaiaaywW7caaI8bGaam4zam aaBaaaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcacaaI 8bGaeyizIm6aaSaaaeaacaaIXaaabaGaam4AaaaacaaISaGaaGzbVl aadshacqGHiiIZcaqGsbGaaGilaiaaywW7caWGRbGaaGypaiaaigda caaISaGaaGOmaiaaiYcacqWIMaYscaaISaaaaa@6730@

где

g kj (t) r k α j ν x kj '( t k + r k ν t) P ˜ j ( t k + r k ν t, x k ( t k + r k ν t), λ k ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGRbGaamOAaaqabaGccaaIOaGaamiDaiaaiMcacqGHHjIU caWGYbWaa0baaSqaaiaadUgaaeaacqGHsislcqaHXoqydaWgaaqaai aadQgaaeqaaiabgkHiTiabe27aUbaakmaabmaabaGaamiEamaaBaaa leaacaWGRbGaamOAaaqabaGccaaINaGaaGikaiaadshadaWgaaWcba Gaam4AaaqabaGccqGHRaWkcaWGYbWaa0baaSqaaiaadUgaaeaacqGH sislcqaH9oGBaaGccaWG0bGaaGykaiabgkHiTiqadcfagaacamaaBa aaleaacaWGQbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadUgaaeqa aOGaey4kaSIaamOCamaaDaaaleaacaWGRbaabaGaeyOeI0IaeqyVd4 gaaOGaamiDaiaaiYcacaWG4bWaaSbaaSqaaiaadUgaaeqaaOGaaGik aiaadshadaWgaaWcbaGaam4AaaqabaGccqGHRaWkcaWGYbWaa0baaS qaaiaadUgaaeaacqGHsislcqaH9oGBaaGccaWG0bGaaGykaiaaiYca cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIPaaacaGLOaGaayzkaa GaaGOlaaaa@7557@

Переходя к пределу, получаем

y 0 (t)=P( t 0 , y 0 (t), λ 0 ),| y 0 (t )| α | y 0 (0)| α =1,tR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaaceaIWaGbauaaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaa dcfacaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG5b WaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiab eU7aSnaaBaaaleaacaaIWaaabeaakiaaiMcacaaISaGaaGzbVlaaiY hacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadshacaaIPaGa aGiFamaaBaaaleaacqaHXoqyaeqaaOGaeyizImQaaGiFaiaadMhada WgaaWcbaGaaGimaaqabaGccaaIOaGaaGimaiaaiMcacaaI8bWaaSba aSqaaiabeg7aHbqabaGccaaI9aGaaGymaiaaiYcacaaMf8UaamiDai abgIGiolaabkfacaaISaaaaa@6587@

что противоречит условию P ˜ (,, λ 0 ) P n,ω 0 (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaia GaaGikaiabgwSixlaaiYcacqGHflY1caaISaGaeq4UdW2aaSbaaSqa aiaaicdaaeqaaOGaaGykaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv 3ySLgzGyKCHTgD1jhaiuaacqWFpapudaqhaaWcbaGaamOBaiaaiYca cqaHjpWDaeaacaaIWaaaaOGaaGikaiabeg7aHjaaiYcacqaH9oGBca aIPaGaaGOlaaaa@5B9E@  

Доказательство теоремы 1.2. Пусть σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  - число, удовлетворяющее условию леммы 2.1. Покажем, что если для λ,μ[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ilaiabeY7aTjabgIGiolaaiUfacaaIWaGaaGilaiaaigdacaaIDbaa aa@41A2@  выполнено неравенство

max 0tω P ˜ j (t,y,λ) P ˜ j (t,y,μ) σ 4 |y | α α j +ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2ga caGGHbGaaiiEaaaadaabdaqaaiqadcfagaacamaaBaaaleaacaWGQb aabeaakiaaiIcacaWG0bGaaGilaiaadMhacaaISaGaeq4UdWMaaGyk aiabgkHiTiqadcfagaacamaaBaaaleaacaWGQbaabeaakiaaiIcaca WG0bGaaGilaiaadMhacaaISaGaeqiVd0MaaGykaaGaay5bSlaawIa7 aiabgsMiJoaalaaabaGaeq4WdmhabaGaaGinaaaacaaI8bGaamyEai aaiYhadaqhaaWcbaGaeqySdegabaGaeqySde2aaSbaaeaacaWGQbaa beaacqGHRaWkcqaH9oGBaaaaaa@65C9@

при любых y R n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaabkfadaahaaWcbeqaaiaad6gaaaGccaaISaaaaa@3D3E@   j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dadaqdaaqaaiaaigdacaaISaGaamOBaaaacaaISaaaaa@3CE8@  то из существования ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы

x (t)= P ˜ (t,x(t),λ)+g(t,x(t)),tR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGikaiaadshacaaIPaGaaGypaiqadcfagaacaiaaiIcacaWG0bGa aGilaiaadIhacaaIOaGaamiDaiaaiMcacaaISaGaeq4UdWMaaGykai abgUcaRiaadEgacaaIOaGaamiDaiaaiYcacaWG4bGaaGikaiaadsha caaIPaGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaabkfaaaa@53C5@  (2.1)

при любом g n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F6A@  вытекает существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы

x (t)= P ˜ (t,x(t),μ)+f(t,x(t)),tR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGikaiaadshacaaIPaGaaGypaiqadcfagaacaiaaiIcacaWG0bGa aGilaiaadIhacaaIOaGaamiDaiaaiMcacaaISaGaeqiVd0MaaGykai abgUcaRiaadAgacaaIOaGaamiDaiaaiYcacaWG4bGaaGikaiaadsha caaIPaGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaabkfaaaa@53C6@  (2.2)

 при любом f n,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@5021@  Этим самым теорема 1.2 будет доказана.

Для произвольного f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@  построим g f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGMbaabeaakiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3y SLgzGyKCHTgD1jhaiuaacqWFCeIudaWgaaWcbaGaamOBaiaaiYcacq aHjpWDaeqaaOGaaGikaiabeg7aHjaaiYcacqaH9oGBcaaIPaaaaa@508B@  так, чтобы при g= g f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaai2 dacaWGNbWaaSbaaSqaaiaadAgaaeqaaaaa@3BBD@  всякое ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение системы (2.1) оказалось решением системы (2.2). Воспользуемся тем, что для f n,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F69@  имеет место неравенство

| f j (t,y)|< σ 4 |y | α α j +ν +M,y R n ,j= 1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA gadaWgaaWcbaGaamOAaaqabaGccaaIOaGaamiDaiaaiYcacaWG5bGa aGykaiaaiYhacaaI8aWaaSaaaeaacqaHdpWCaeaacaaI0aaaaiaaiY hacaWG5bGaaGiFamaaDaaaleaacqaHXoqyaeaacqaHXoqydaWgaaqa aiaadQgaaeqaaiabgUcaRiabe27aUbaakiabgUcaRiaad2eacaaISa GaaGzbVlaadMhacqGHiiIZcaqGsbWaaWbaaSqabeaacaWGUbaaaOGa aGilaiaaywW7caWGQbGaaGypamaanaaabaGaaGymaiaaiYcacaWGUb aaaiaaiYcaaaa@5D53@

где M>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaai6 dacaaIWaaaaa@3A5B@  и зависит лишь от f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@38F2@  и σ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaaG Olaaaa@3A82@  Выберем число r, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiY caaaa@39B4@  удовлетворяющее условиям r>1/σ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 dacaaIXaGaaG4laiabeo8aZjaaiYcaaaa@3DB3@   r α j +ν >2M/σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaeqySde2aaSbaaeaacaWGQbaabeaacqGHRaWkcqaH9oGB aaGccaaI+aGaaGOmaiaad2eacaaIVaGaeq4Wdmhaaa@4350@  при всех j= 1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dadaqdaaqaaiaaigdacaaISaGaamOBaaaacaaIUaaaaa@3CEA@  Положим

g f (t,y):=f(t,y)+ η r (|y | α )( P ˜ (t,y,μ) P ˜ (t,y,λ)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGMbaabeaakiaaiIcacaWG0bGaaGilaiaadMhacaaIPaGa aGOoaiaai2dacaWGMbGaaGikaiaadshacaaISaGaamyEaiaaiMcacq GHRaWkcqaH3oaAdaWgaaWcbaGaamOCaaqabaGccaaIOaGaaGiFaiaa dMhacaaI8bWaaSbaaSqaaiabeg7aHbqabaGccaaIPaGaaGikaiqadc fagaacaiaaiIcacaWG0bGaaGilaiaadMhacaaISaGaeqiVd0MaaGyk aiabgkHiTiqadcfagaacaiaaiIcacaWG0bGaaGilaiaadMhacaaISa Gaeq4UdWMaaGykaiaaiMcacaaISaaaaa@6077@

где η r C[0,+), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadkhaaeqaaOGaeyicI4Saam4qaiaaiUfacaaIWaGaaGil aiabgUcaRiabg6HiLkaaiMcacaaISaaaaa@433D@   0 η r (τ)1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkabeE7aOnaaBaaaleaacaWGYbaabeaakiaaiIcacqaHepaDcaaI PaGaeyizImQaaGymaiaaiYcaaaa@439F@   η r (τ)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadkhaaeqaaOGaaGikaiabes8a0jaaiMcacaaI9aGaaGym aaaa@3F8C@  при τr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey izImQaamOCaaaa@3C78@  и η r (τ)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadkhaaeqaaOGaaGikaiabes8a0jaaiMcacaaI9aGaaGim aaaa@3F8B@  при τr+1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaey yzImRaamOCaiabgUcaRiaaigdacaaIUaaaaa@3EDE@  Очевидно, g n,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaamOBaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@5022@  Пусть x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@3B62@  - ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение системы (2.1) при g= g f . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaai2 dacaWGNbWaaSbaaSqaaiaadAgaaeqaaOGaaGOlaaaa@3C7F@  Проверим, что A:=max{|x(t )| α :0tω}r; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiQ dacaaI9aGaciyBaiaacggacaGG4bGaaG4EaiaaiYhacaWG4bGaaGik aiaadshacaaIPaGaaGiFamaaBaaaleaacqaHXoqyaeqaaOGaaGOoai aaicdacqGHKjYOcaWG0bGaeyizImQaeqyYdCNaaGyFaiabgsMiJkaa dkhacaaI7aaaaa@5193@  тогда x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@3B62@  будет решением системы (2.2). Действительно, если A>r, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaai6 dacaWGYbGaaGilaaaa@3B42@  то согласно лемме 2.1 при некотором j 0 = j 0 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa aaleaacaaIWaaabeaakiaai2dacaWGQbWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadIhacaaIPaaaaa@3EEE@  имеет место неравенство

max 0tω x j 0 '(t) P ˜ j 0 (t,x(t),λ) >σ A α j 0 +ν . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2ga caGGHbGaaiiEaaaadaabdaqaaiaadIhadaWgaaWcbaGaamOAamaaBa aabaGaaGimaaqabaaabeaakiaaiEcacaaIOaGaamiDaiaaiMcacqGH sislceWGqbGbaGaadaWgaaWcbaGaamOAamaaBaaabaGaaGimaaqaba aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIOaGaamiDaiaaiMca caaISaGaeq4UdWMaaGykaaGaay5bSlaawIa7aiaai6dacqaHdpWCca WGbbWaaWbaaSqabeaacqaHXoqydaWgaaqaaiaadQgadaWgaaqaaiaa icdaaeqaaaqabaGaey4kaSIaeqyVd4gaaOGaaGOlaaaa@6285@

С другой стороны, в силу системы уравнений (2.1) имеем;

max 0tω x j 0 '(t) P ˜ j 0 (t,x(t),λ) = max 0tω |( g f ) j 0 (t,x(t))| σ 2 A α j 0 +ν +M. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaaiGac2ga caGGHbGaaiiEaaaadaabdaqaaiaadIhadaWgaaWcbaGaamOAamaaBa aabaGaaGimaaqabaaabeaakiaaiEcacaaIOaGaamiDaiaaiMcacqGH sislceWGqbGbaGaadaWgaaWcbaGaamOAamaaBaaabaGaaGimaaqaba aabeaakiaaiIcacaWG0bGaaGilaiaadIhacaaIOaGaamiDaiaaiMca caaISaGaeq4UdWMaaGykaaGaay5bSlaawIa7aiaai2dadaGfqbqabS qaaiaaicdacqGHKjYOcaWG0bGaeyizImQaeqyYdChabeGcbaGaciyB aiaacggacaGG4baaaiaaiYhacaaIOaGaam4zamaaBaaaleaacaWGMb aabeaakiaaiMcadaWgaaWcbaGaamOAamaaBaaabaGaaGimaaqabaaa beaakiaaiIcacaWG0bGaaGilaiaadIhacaaIOaGaamiDaiaaiMcaca aIPaGaaGiFaiabgsMiJoaalaaabaGaeq4WdmhabaGaaGOmaaaacaWG bbWaaWbaaSqabeaacqaHXoqydaWgaaqaaiaadQgadaWgaaqaaiaaic daaeqaaaqabaGaey4kaSIaeqyVd4gaaOGaey4kaSIaamytaiaai6ca aaa@7EE8@

Следовательно, r α j 0 +ν < A α j 0 +ν <2M/σ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaeqySde2aaSbaaeaacaWGQbWaaSbaaeaacaaIWaaabeaa aeqaaiabgUcaRiabe27aUbaakiaaiYdacaWGbbWaaWbaaSqabeaacq aHXoqydaWgaaqaaiaadQgadaWgaaqaaiaaicdaaeqaaaqabaGaey4k aSIaeqyVd4gaaOGaaGipaiaaikdacaWGnbGaaG4laiabeo8aZjaai6 caaaa@4CC8@  Полученное противоречит выбору r. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 caaaa@39B6@  

2.1. Теорема 1.3

Пусть Q=( Q 1 , Q 2 ): R 2 R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaai2 dacaaIOaGaamyuamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGrbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiQdacaqGsbWaaWbaaSqabe aacaaIYaaaaOGaeSOPHeMaaeOuamaaCaaaleqabaGaaGOmaaaaaaa@4551@  - непрерывное отображение, удовлетворяющее условию квазиоднородности Q P 2,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4FDD@  и условию невырожденности Q(coss,sins)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI caciGGJbGaai4BaiaacohacaWGZbGaaGilaiGacohacaGGPbGaaiOB aiaadohacaaIPaGaeyiyIKRaaGimaaaa@4514@   sR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4CaiabgIGiolaabkfacaaIUaaaaa@3CE0@  Выясним, при каких дополнительных условиях имеет место включение Q P 2,ω 0 (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@5150@  Для этого определим непрерывные угловые функции θ Q (s), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadgfaaeqaaOGaaGikaiaadohacaaIPaGaaGilaaaa@3DDC@   θ α (s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcaaaa@3DEF@  из следующих равенств:

Q 1 (coss,sins)=|Q(coss,sins)|cos( θ Q (s)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIXaaabeaakiaaiIcaciGGJbGaai4BaiaacohacaWGZbGa aGilaiGacohacaGGPbGaaiOBaiaadohacaaIPaGaaGypaiaaiYhaca WGrbGaaGikaiGacogacaGGVbGaai4CaiaadohacaaISaGaci4Caiaa cMgacaGGUbGaam4CaiaaiMcacaaI8bGaci4yaiaac+gacaGGZbGaaG ikaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbGaaGyk aiaaiMcacaaISaaaaa@5AF0@

Q 2 (coss,sins)=|Q(coss,sins)|sin( θ Q (s)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIYaaabeaakiaaiIcaciGGJbGaai4BaiaacohacaWGZbGa aGilaiGacohacaGGPbGaaiOBaiaadohacaaIPaGaaGypaiaaiYhaca WGrbGaaGikaiGacogacaGGVbGaai4CaiaadohacaaISaGaci4Caiaa cMgacaGGUbGaam4CaiaaiMcacaaI8bGaci4CaiaacMgacaGGUbGaaG ikaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbGaaGyk aiaaiMcacaaISaaaaa@5AF6@

cos( θ α (s))= α 1 coss b α (s) ,sin( θ α (s))= α 2 sins b α (s) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaGikaiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGik aiaadohacaaIPaGaaGykaiaai2dadaWcaaqaaiabeg7aHnaaBaaale aacaaIXaaabeaakiGacogacaGGVbGaai4CaiaadohaaeaacaWGIbWa aSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcaaaGaaGilai aaywW7ciGGZbGaaiyAaiaac6gacaaIOaGaeqiUde3aaSbaaSqaaiab eg7aHbqabaGccaaIOaGaam4CaiaaiMcacaaIPaGaaGypamaalaaaba GaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGa am4CaaqaaiaadkgadaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZb GaaGykaaaacaaISaaaaa@67E2@

где sR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI GiolaabkfacaaISaaaaa@3C0E@   θ Q (0)[0,2π), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadgfaaeqaaOGaaGikaiaaicdacaaIPaGaeyicI4SaaG4w aiaaicdacaaISaGaaGOmaiabec8aWjaaiMcacaaISaaaaa@44A3@   θ α (0)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabeg7aHbqabaGccaaIOaGaaGimaiaaiMcacaaI9aGaaGim aiaaiYcaaaa@3FE8@   b α (s)= ( α 1 coss) 2 + ( α 2 sins) 2 ) 1/2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaGaaGypamaabmaa baGaaGikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiGacogacaGGVb Gaai4CaiaadohacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGikaiabeg7aHnaaBaaaleaacaaIYaaabeaakiGacohacaGGPbGaai OBaiaadohacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaaGaayjk aiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIYaaaaOGaaGOlaa aa@5590@  Определим число

γ(Q):= 1 2π θ Q (s+2π) θ Q (s) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacaaI YaGaeqiWdahaamaabmaabaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaO GaaGikaiaadohacqGHRaWkcaaIYaGaeqiWdaNaaGykaiabgkHiTiab eI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbGaaGykaaGaay jkaiaawMcaaiaaiYcaaaa@517D@

которое является целым и не зависит от s. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai6 caaaa@39B7@

Пусть x(t)=( x 1 (t), x 2 (t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamiEamaaBaaaleaacaaIXaaa beaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG4bWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadshacaaIPaGaaGykaiaaiYcaaaa@4793@   t( τ 1 , τ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiIcacqaHepaDdaWgaaWcbaGaaGymaaqabaGccaaISaGaeqiX dq3aaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@420C@  - произвольное ненулевое решение системы уравнений

x (t)=Q(x(t)),x(t) R 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGikaiaadshacaaIPaGaaGypaiaadgfacaaIOaGaamiEaiaaiIca caWG0bGaaGykaiaaiMcacaaISaGaaGzbVlaadIhacaaIOaGaamiDai aaiMcacqGHiiIZcaqGsbWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa @4B6E@  (2.3)

Cкалярно перемножая на x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@3B62@  можно проверить, что x(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaaaa@3B62@  нигде не обращается в ноль. Произведем замену x 1 (t)= r α 1 (t)cosψ(t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaWGYbWa aWbaaSqabeaacqaHXoqydaWgaaqaaiaaigdaaeqaaaaakiaaiIcaca WG0bGaaGykaiGacogacaGGVbGaai4CaiabeI8a5jaaiIcacaWG0bGa aGykaiaaiYcaaaa@4AD6@   x 2 (t)= r α 2 (t)sinψ(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaWGYbWa aWbaaSqabeaacqaHXoqydaWgaaqaaiaaikdaaeqaaaaakiaaiIcaca WG0bGaaGykaiGacohacaGGPbGaaiOBaiabeI8a5jaaiIcacaWG0bGa aGykaiaai6caaaa@4ADF@  Данная замена обратима и относительно r(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG0bGaaGykaaaa@3B5C@  и ψ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadshacaaIPaaaaa@3C33@  получаем систему уравнений

ξ (t) r (t)=r(t)|Q(cosψ(t),sinψ(t))|cos θ Q (ψ(t))ψ(t) , ξ (t) ψ (t)=|Q(cosψ(t),sinψ(t))| b α (ψ(t))sin θ Q (ψ(t)) θ α (ψ(t)) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGabaaabaGafqOVdGNbauaacaaIOaGaamiDaiaaiMcaceWGYbGb auaacaaIOaGaamiDaiaaiMcacaaI9aGaamOCaiaaiIcacaWG0bGaaG ykaiaaiYhacaWGrbGaaGikaiGacogacaGGVbGaai4CaiabeI8a5jaa iIcacaWG0bGaaGykaiaaiYcaciGGZbGaaiyAaiaac6gacqaHipqEca aIOaGaamiDaiaaiMcacaaIPaGaaGiFaiGacogacaGGVbGaai4Camaa bmaabaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiabeI8a5j aaiIcacaWG0bGaaGykaiaaiMcacqGHsislcqaHipqEcaaIOaGaamiD aiaaiMcaaiaawIcacaGLPaaacaaISaaabaGafqOVdGNbauaacaaIOa GaamiDaiaaiMcacuaHipqEgaqbaiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamyuaiaaiIcaciGGJbGaai4BaiaacohacqaHipqEcaaIOa GaamiDaiaaiMcacaaISaGaci4CaiaacMgacaGGUbGaeqiYdKNaaGik aiaadshacaaIPaGaaGykaiaaiYhacaWGIbWaaSbaaSqaaiabeg7aHb qabaGccaaIOaGaeqiYdKNaaGikaiaadshacaaIPaGaaGykaiGacoha caGGPbGaaiOBamaabmaabaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaO GaaGikaiabeI8a5jaaiIcacaWG0bGaaGykaiaaiMcacqGHsislcqaH 4oqCdaWgaaWcbaGaeqySdegabeaakiaaiIcacqaHipqEcaaIOaGaam iDaiaaiMcacaaIPaaacaGLOaGaayzkaaGaaGilaaaaaiaawUhaaaaa @A641@

где

ξ(t)= 0 t α 1 cos 2 ψ(s)+ α 2 sin 2 ψ(s) r ν (s)|Q(cosψ(s),sinψ(s))| ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaGaaGypamaapedabeWcbaGaaGimaaqaaiaadsha a0Gaey4kIipakmaalaaabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaO WaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiab eI8a5jaaiIcacaWGZbGaaGykaiabgUcaRiabeg7aHnaaBaaaleaaca aIYaaabeaakmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPbGa aiOBaaaacqaHipqEcaaIOaGaam4CaiaaiMcaaeaacaWGYbWaaWbaaS qabeaacqaH9oGBaaGccaaIOaGaam4CaiaaiMcacaaI8bGaamyuaiaa iIcaciGGJbGaai4BaiaacohacqaHipqEcaaIOaGaam4CaiaaiMcaca aISaGaci4CaiaacMgacaGGUbGaeqiYdKNaaGikaiaadohacaaIPaGa aGykaiaaiYhaaaGaamizaiaadohacaaIUaaaaa@71E2@

Отсюда для ρ(t)=r(ξ(t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadshacaaIPaGaaGypaiaadkhacaaIOaGaeqOVdGNaaGikaiaa dshacaaIPaGaaGykaiaaiYcaaaa@441F@   φ(t)=ψ(ξ(t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaIPaGaaGypaiabeI8a5jaaiIcacqaH+oaEcaaIOaGa amiDaiaaiMcacaaIPaaaaa@443D@  получаем систему уравнений

ρ (t)=ρ(t)cos θ Q (φ(t))φ(t) , φ (t)= b α (φ(t))sin θ Q (φ(t)) θ α (φ(t)) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGabaaabaGafqyWdiNbauaacaaIOaGaamiDaiaaiMcacaaI9aGa eqyWdiNaaGikaiaadshacaaIPaGaci4yaiaac+gacaGGZbWaaeWaae aacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaIOaGaeqOXdOMaaGik aiaadshacaaIPaGaaGykaiabgkHiTiabeA8aQjaaiIcacaWG0bGaaG ykaaGaayjkaiaawMcaaiaaiYcaaeaacuaHgpGAgaqbaiaaiIcacaWG 0bGaaGykaiaai2dacaWGIbWaaSbaaSqaaiabeg7aHbqabaGccaaIOa GaeqOXdOMaaGikaiaadshacaaIPaGaaGykaiGacohacaGGPbGaaiOB amaabmaabaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiabeA 8aQjaaiIcacaWG0bGaaGykaiaaiMcacqGHsislcqaH4oqCdaWgaaWc baGaeqySdegabeaakiaaiIcacqaHgpGAcaaIOaGaamiDaiaaiMcaca aIPaaacaGLOaGaayzkaaGaaGOlaaaaaiaawUhaaaaa@7915@  (2.4)

Таким образом, установлено, что система уравнений (2.3) не имеет ненулевых ограниченных решений тогда и только тогда, когда система уравнений (2.4) не имеет решений с ненулевой и ограниченной координатой ρ(t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadshacaaIPaGaaGOlaaaa@3CDD@

Пусть

sin θ Q (s) θ α (s) 0sR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiabgcMi5kaaicda caaMf8UaaGzbVlabgcGiIiaadohacqGHiiIZcaqGsbGaaGOlaaaa@52D2@  (2.5)

Тогда γ(Q)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdaaaa@3D6B@  и система уравнений (2.3) не имеет ненулевых ограниченных решений лишь в том случае, когда выполнено условие

0 2π cos( θ Q (s)s) b α (s)sin( θ Q (s) θ α (s)) ds0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aOWaaSaaaeaaciGG JbGaai4BaiaacohacaaIOaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaO GaaGikaiaadohacaaIPaGaeyOeI0Iaam4CaiaaiMcaaeaacaWGIbWa aSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcaciGGZbGaai yAaiaac6gacaaIOaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGik aiaadohacaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqaba GccaaIOaGaam4CaiaaiMcacaaIPaaaaiaadsgacaWGZbGaeyiyIKRa aGimaiaai6caaaa@631E@  (2.6)

Доказательство. Если выполнено условие (2.5), то

π j 0 < θ Q (s) θ α (s)<π( j 0 +1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OAamaaBaaaleaacaaIWaaabeaakiaaiYdacqaH4oqCdaWgaaWcbaGa amyuaaqabaGccaaIOaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaa WcbaGaeqySdegabeaakiaaiIcacaWGZbGaaGykaiaaiYdacqaHapaC caaIOaGaamOAamaaBaaaleaacaaIWaaabeaakiabgUcaRiaaigdaca aIPaaaaa@4FC1@

при некотором целом j 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAamaaBa aaleaacaaIWaaabeaaaaa@39DC@  и всех sR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiabgI GiolaabkfacaaIUaaaaa@3C10@  Отсюда выводим:

π< θ Q (s+2π) θ Q (s) θ α (s+2π) θ α (s) <π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaGipamaabmaabaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGa aGikaiaadohacqGHRaWkcaaIYaGaeqiWdaNaaGykaiabgkHiTiabeI 7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbGaaGykaaGaayjk aiaawMcaaiabgkHiTmaabmaabaGaeqiUde3aaSbaaSqaaiabeg7aHb qabaGccaaIOaGaam4CaiabgUcaRiaaikdacqaHapaCcaaIPaGaeyOe I0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiM caaiaawIcacaGLPaaacaaI8aGaeqiWdaNaaGilaaaa@614D@

π<2πγ(Q) θ α (s+2π) θ α (s) <π, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaGipaiaaikdacqaHapaCcqaHZoWzcaaIOaGaamyuaiaaiMca cqGHsisldaqadaqaaiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaG ikaiaadohacqGHRaWkcaaIYaGaeqiWdaNaaGykaiabgkHiTiabeI7a XnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaaacaGLOa GaayzkaaGaaGipaiabec8aWjaaiYcaaaa@5799@

следовательно, γ(Q)=1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacaaISaaaaa@3E21@  так как θ α (s+2π) θ α (s)=2π. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiabgUcaRiaaikdacqaH apaCcaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGcca aIOaGaam4CaiaaiMcacaaI9aGaaGOmaiabec8aWjaai6caaaa@4C17@  Кроме того, из условия (2.5) следует, что для произвольного решения системы уравнений (2.4) его координата φ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacaaIPaaaaa@3C22@  строго монотонна, и для любого целого l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@38F8@  существует t l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGSbaabeaaaaa@3A1D@  такое, что φ(t+ t l )φ(t)+2πl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadshacqGHRaWkcaWG0bWaaSbaaSqaaiaadYgaaeqaaOGaaGyk aiabggMi6kabeA8aQjaaiIcacaWG0bGaaGykaiabgUcaRiaaikdacq aHapaCcaWGSbGaaGOlaaaa@4A0C@  Отсюда, в силу первого уравнения системы (2.5), выводим:

lnρ(t+ t l )lnρ(t)+l 0 2π cos( θ Q (s)s) b α (s)sin( θ Q (s) θ α (s)) ds. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacqaHbpGCcaaIOaGaamiDaiabgUcaRiaadshadaWgaaWcbaGaamiB aaqabaGccaaIPaGaeyyyIORaciiBaiaac6gacqaHbpGCcaaIOaGaam iDaiaaiMcacqGHRaWkcaWGSbWaa8qmaeqaleaacaaIWaaabaGaaGOm aiabec8aWbqdcqGHRiI8aOWaaSaaaeaaciGGJbGaai4Baiaacohaca aIOaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadohacaaI PaGaeyOeI0Iaam4CaiaaiMcaaeaacaWGIbWaaSbaaSqaaiabeg7aHb qabaGccaaIOaGaam4CaiaaiMcaciGGZbGaaiyAaiaac6gacaaIOaGa eqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadohacaaIPaGaey OeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4Caiaa iMcacaaIPaaaaiaadsgacaWGZbGaaGOlaaaa@733F@

Следовательно, координата ρ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadshacaaIPaaaaa@3C25@  ограничена лишь при выполнении условия (2.6).

Пусть sin θ Q ( s 0 ) θ α ( s 0 ) =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsislcqaH4o qCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa icdaaeqaaOGaaGykaaGaayjkaiaawMcaaiaai2dacaaIWaaaaa@4BBD@  при некотором s 0 [0,2π). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiaaikda cqaHapaCcaaIPaGaaGOlaaaa@41AC@

Определение 2.1. Интервал ( s 1 , s 2 )( s 0 , s 0 +2π), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado hadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaI YaaabeaakiaaiMcacqGHckcZcaaIOaGaam4CamaaBaaaleaacaaIWa aabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa aGOmaiabec8aWjaaiMcacaaISaaaaa@49ED@  где sin θ Q ( s j ) θ α ( s j ) =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CamaaBaaaleaacaWGQbaabeaakiaaiMcacqGHsislcqaH4o qCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa dQgaaeqaaOGaaGykaaGaayjkaiaawMcaaiaai2dacaaIWaGaaGilaa aa@4CDD@   j=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaai2 dacaaIXaGaaGilaiaaikdacaaISaaaaa@3CA0@  назовем

гиперболическим, если

sin θ Q (s) θ α (s) >0s( s 1 , s 2 ),cos θ Q ( s 1 ) s 1 <0,cos θ Q ( s 2 ) s 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiaai6dacaaIWaGa aGjbVlabgcGiIiaadohacqGHiiIZcaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiYcacaaMe8UaaGjbVlaayIW7ciGGJbGaai4Baiaacohadaqada qaaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSba aSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaacaaI8aGaaGimaiaaiYcacaaMe8Ua aGjbVlaayIW7ciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikdaaeqa aOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacaaI+aGaaGimaaaa@7CEF@

или

sin θ Q (s) θ α (s) <0s( s 1 , s 2 ),cos θ Q ( s 1 ) s 1 >0,cos θ Q ( s 2 ) s 2 <0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiaaiYdacaaIWaGa aGjbVlabgcGiIiaadohacqGHiiIZcaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiYcacaaMe8UaaGjbVlaayIW7ciGGJbGaai4Baiaacohadaqada qaaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSba aSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaacaaI+aGaaGimaiaaiYcacaaMe8Ua aGjbVlaayIW7ciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikdaaeqa aOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacaaI8aGaaGimaiaaiUdaaaa@7DB2@

эллиптическим, если

sin θ Q (s) θ α (s) >0s( s 1 , s 2 ),cos θ Q ( s 1 ) s 1 >0,cos θ Q ( s 2 ) s 2 <0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiaai6dacaaIWaGa aGjbVlabgcGiIiaadohacqGHiiIZcaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiYcacaaMe8UaaGjbVlaayIW7ciGGJbGaai4Baiaacohadaqada qaaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSba aSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaacaaI+aGaaGimaiaaiYcacaaMe8Ua aGjbVlaayIW7ciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikdaaeqa aOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacaaI8aGaaGimaiaaiYcaaaa@7DA5@

или

sin θ Q (s) θ α (s) <0s( s 1 , s 2 ),cos θ Q ( s 1 ) s 1 <0,cos θ Q ( s 2 ) s 2 >0; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiaaiYdacaaIWaGa aGjbVlabgcGiIiaadohacqGHiiIZcaaIOaGaam4CamaaBaaaleaaca aIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiYcacaaMe8UaaGjbVlaayIW7ciGGJbGaai4Baiaacohadaqada qaaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSba aSqaaiaaigdaaeqaaOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaacaaI8aGaaGimaiaaiYcacaaMe8Ua aGjbVlaayIW7ciGGJbGaai4BaiaacohadaqadaqaaiabeI7aXnaaBa aaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaikdaaeqa aOGaaGykaiabgkHiTiaadohadaWgaaWcbaGaaGOmaaqabaaakiaawI cacaGLPaaacaaI+aGaaGimaiaaiUdaaaa@7DB2@

параболическим, если не пересекается с гиперболическими и эллиптическими интервалами и не содержится в другом более широком интервале, не пересекающимся с гиперболическими и эллиптическими интервалами.

Можно непосредственно проверить справедливость следующих шести утверждений.

Утверждение 2.1. Если φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaaicdaaeqaaaaa@3AAA@  принадлежит гиперболическому (эллиптическому, параболическому) интервалу, то среди решений системы уравнений (6), удовлетворяющих начальному условию φ(0)= φ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaaicdacaaIPaGaaGypaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiYcaaaa@400D@  существует решение, у которого координата ρ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ikaiaadshacaaIPaaaaa@3C25@

а) неограничена при t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  и t<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY dacaaIWaaaaa@3A80@  - в гиперболическом случае;

б) ограничена при t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  и t<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY dacaaIWaaaaa@3A80@  - в эллиптическом случае;

в) ограничена при t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  ( t<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY dacaaIWaaaaa@3A80@  ) и неограничена при t<0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY dacaaIWaaaaa@3A80@  ( t>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai6 dacaaIWaaaaa@3A82@  ) - в параболическом случае.

Утверждение 2.2. Число гиперболических, эллиптических и параболических интервалов конечно и объединения их замыканий совпадают с отрезком [ s 0 , s 0 +2π]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaado hadaWgaaWcbaGaaGimaaqabaGccaaISaGaam4CamaaBaaaleaacaaI WaaabeaakiabgUcaRiaaikdacqaHapaCcaaIDbGaaGOlaaaa@426C@

Утверждение 2.3. Для концов s 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaaiYcaaaa@3AA6@   s 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaaaaa@39E7@  интервала ( s 1 , s 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado hadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaI YaaabeaakiaaiMcacaaISaaaaa@3EAB@  являющегося гиперболическим (эллиптическим, параболическим), справедливо равенство

θ Q ( s 2 ) θ α ( s 2 )= θ Q ( s 1 ) θ α ( s 1 )+χπ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadgfaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGcca aIOaGaam4CamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaeqiU de3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqa baGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHRa WkcqaHhpWycqaHapaCcaaISaaaaa@5988@

где χ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdmgaaa@39BE@  равно 1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ymaiaaiYcaaaa@3A65@   1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  или 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@  соответственно в зависимости от гиперболичности, эллиптичности или параболичности интервала ( s 1 , s 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaado hadaWgaaWcbaGaaGymaaqabaGccaaISaGaam4CamaaBaaaleaacaaI YaaabeaakiaaiMcacaaIUaaaaa@3EAD@  

Утверждение 2.4. Справедлива формула

γ(Q)=1+ 1 2 n Э n Г , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacqGHRaWkdaWcaaqaaiaaigda aeaacaaIYaaaamaabmaabaGaamOBamaaBaaaleaacaqGTqaabeaaki abgkHiTiaad6gadaWgaaWcbaGaae4eeaqabaaakiaawIcacaGLPaaa caaISaaaaa@46A0@

где n Г MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGtqaabeaaaaa@39C0@  и n Э MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaaaaa@39DA@  - число гиперболических и эллиптических интервалов соответственно.

Утверждение 2.5. Если система уравнений (2.3) не имеет ненулевых ограниченных решений, то

γ(Q)=1 1 2 n Г 1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacqGHsisldaWcaaqaaiaaigda aeaacaaIYaaaaiaad6gadaWgaaWcbaGaae4eeaqabaGccqGHKjYOca aIXaGaaGOlaaaa@44CA@  (2.7)

Утверждение 2.6. Система уравнений (2.3) не имеет ненулевых ограниченных решений тогда и только тогда, когда n Э =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaakiaai2dacaaIWaaaaa@3B65@  и (2.3) не имеет ненулевых периодических решений.

Лемма 2.3. Пусть выполнены следующие условия:

1) γ(Q)=1; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacaaI7aaaaa@3E30@

2) sin θ Q ( s 0 ) θ α ( s 0 ) =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsislcqaH4o qCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa icdaaeqaaOGaaGykaaGaayjkaiaawMcaaiaai2dacaaIWaaaaa@4BBD@  при некотором s 0 [0,2π); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiaaikda cqaHapaCcaaIPaGaaG4oaaaa@41B9@

3) при любом x 0 R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgIGiolaabkfadaahaaWcbeqaaiaaikda aaaaaa@3D36@  единственно решение системы уравнений (2.3), удовлетворяющее начальному условию x(0)= x 0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaaIWaGaaGykaiaai2dacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGa aGOlaaaa@3E8F@  

Тогда система уравнений (2.3) не имеет ненулевых ограниченных решений лишь в том случае, когда выполнено одно из двух условий: либо

π< θ Q (s) θ α (s)<πsR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaGipaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWG ZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaG ikaiaadohacaaIPaGaaGipaiabec8aWjaaywW7cqGHaiIicaWGZbGa eyicI4SaaeOuaiaaiYcaaaa@5053@  (2.8)

либо

0< θ Q (s) θ α (s)<2πsR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVlaaic dacaaI8aGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadoha caaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaIOa Gaam4CaiaaiMcacaaI8aGaaGOmaiabec8aWjaaywW7cqGHaiIicaWG ZbGaeyicI4SaaeOuaiaai6caaaa@50AE@  (2.9)

Доказательство. Заметим, что выполнение одного из условий (2.8), (2.9) равносильно равенствам n Э = n Г =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaakiaai2dacaWGUbWaaSbaaSqaaiaabobbaeqa aOGaaGypaiaaicdacaaIUaaaaa@3EA7@

Если система уравнений (2.3) не имеет ненулевых ограниченных решений, то n Э =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaakiaai2dacaaIWaaaaa@3B65@  и в силу условия γ(Q)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdaaaa@3D6B@  и формулы (2.7) получаем n Г =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGtqaabeaakiaai2dacaaIWaGaaGOlaaaa@3C03@  Обратно, если n Э = n Г =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaakiaai2dacaWGUbWaaSbaaSqaaiaabobbaeqa aOGaaGypaiaaicdacaaISaaaaa@3EA5@  то для системы уравнений (2.3), согласно утверждению 2.6, отсутствие ненулевых ограниченных решений равносильно отсутствию ненулевых периодических решений. А в силу условий 2) и 3) ненулевое периодическое решение не существует.

Лемма 2.4. Если γ(Q)<1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGipaiaaigdacaaISaaaaa@3E20@  то система уравнений (2.3) не имеет ненулевых ограниченных решений лишь в том случае, когда выполнено условие

( s 1 j 1 целое θ Q ( s 1 ) θ α ( s 1 )=π j 1 ) θ Q (s) θ α (s)<π j 1 +πs> s 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaayI W7cqGHdicjcaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGjbVlaayIW7 cqGHdicjcaWGQbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaeOrei aabwdbcaqG7qGaaeOpeiaabwdbcaaMe8UaeqiUde3aaSbaaSqaaiaa dgfaaeqaaOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaIPa GaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4C amaaBaaaleaacaaIXaaabeaakiaaiMcacaaI9aGaeqiWdaNaamOAam aaBaaaleaacaaIXaaabeaakiaayIW7caaIPaGaaGjbVlaaysW7cqGH shI3caaMe8UaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGikaiaado hacaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaI OaGaam4CaiaaiMcacaaI8aGaeqiWdaNaamOAamaaBaaaleaacaaIXa aabeaakiabgUcaRiabec8aWjaaysW7caaMe8UaeyiaIiIaam4Caiaa i6dacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaaGOlaaaa@7FE4@                    (2.10)

Доказательство. В силу условия γ(Q)<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGipaiaaigdaaaa@3D6A@  и утверждения 2.6 для системы уравнений (2.3) отсутствие ненулевых ограниченных решений равносильно равенству n Э =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaqGTqaabeaakiaai2dacaaIWaGaaGOlaaaa@3C1D@  А это равенство равносильно условию (2.10).

Леммы 2.2-2.4 подытожим следующей теоремой.

Теорема 2.1. Пусть Q P 2,ω (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@5093@   Q(coss,sins)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiaaiI caciGGJbGaai4BaiaacohacaWGZbGaaGilaiGacohacaGGPbGaaiOB aiaadohacaaIPaGaeyiyIKRaaGimaaaa@4514@   sR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4CaiabgIGiolaabkfaaaa@3C28@  и пусть при γ(Q)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdaaaa@3D6B@  единственно решение задачи Коши для системы уравнений (2.3) с любым начальным значением x 0 R 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgIGiolaabkfadaahaaWcbeqaaiaaikda aaGccaaIUaaaaa@3DF8@  Тогда система уравнений (2.3) не имеет ненулевых ограниченных решений лишь в том случае, когда выполнено одно из следующих условий:  γ(Q)=1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacaaISaaaaa@3E21@   sin θ Q (s) θ α (s) 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CaiaaiMcacqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaaGaayjkaiaawMcaaiabgcMi5kaaicda aaa@4ADD@   sR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4CaiabgIGiolaabkfacaaISaaaaa@3CDE@  

Условие 2.1. 0 2π cos( θ Q (s)s) b α (s)sin( θ Q (s) θ α (s)) ds0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aOWaaSaaaeaaciGG JbGaai4BaiaacohacaaIOaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaO GaaGikaiaadohacaaIPaGaeyOeI0Iaam4CaiaaiMcaaeaacaWGIbWa aSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcaciGGZbGaai yAaiaac6gacaaIOaGaeqiUde3aaSbaaSqaaiaadgfaaeqaaOGaaGik aiaadohacaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqaba GccaaIOaGaam4CaiaaiMcacaaIPaaaaiaadsgacaWGZbGaeyiyIKRa aGimaiaai6caaaa@631E@

Условие 2.2. γ(Q)=1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGypaiaaigdacaaISaaaaa@3E21@   sin θ Q ( s 0 ) θ α ( s 0 ) =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaI OaGaam4CamaaBaaaleaacaaIWaaabeaakiaaiMcacqGHsislcqaH4o qCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZbWaaSbaaSqaaiaa icdaaeqaaOGaaGykaaGaayjkaiaawMcaaiaai2dacaaIWaaaaa@4BBD@  при некотором s 0 [0,2π), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiaaikda cqaHapaCcaaIPaGaaGilaaaa@41AA@  либо π< θ Q (s) θ α (s)<π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaGipaiabeI7aXnaaBaaaleaacaWGrbaabeaakiaaiIcacaWG ZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaG ikaiaadohacaaIPaGaaGipaiabec8aWbaa@49EE@   sR, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4CaiabgIGiolaabkfacaaISaaaaa@3CDE@  либо 0< θ Q (s) θ α (s)<2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH4oqCdaWgaaWcbaGaamyuaaqabaGccaaIOaGaam4CaiaaiMca cqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZb GaaGykaiaaiYdacaaIYaGaeqiWdahaaa@48BA@   sR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam 4CaiabgIGiolaabkfacaaIUaaaaa@3CE0@  

Условие 2.3. γ(Q)<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ikaiaadgfacaaIPaGaaGipaiaaigdaaaa@3D6A@  и ( s 1 R j 1 целое θ Q ( s 1 ) θ α ( s 1 )=π j 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaayI W7cqGHdicjcaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyicI4SaaeOu aiaaysW7caaMe8Uaey4aIqIaamOAamaaBaaaleaacaaIXaaabeaaki abgkHiTiaabAebcaqG1qGaae4oeiaab6dbcaqG1qGaaGzbVlabeI7a XnaaBaaaleaacaWGrbaabeaakiaaiIcacaWGZbWaaSbaaSqaaiaaig daaeqaaOGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqa aOGaaGikaiaadohadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGypai abec8aWjaadQgadaWgaaWcbaGaaGymaaqabaGccaaMi8UaaGykaaaa @5FF5@   MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3A64@   θ Q (s) θ α (s)<π j 1 +πs> s 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadgfaaeqaaOGaaGikaiaadohacaaIPaGaeyOeI0IaeqiU de3aaSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcacaaI8a GaeqiWdaNaamOAamaaBaaaleaacaaIXaaabeaakiabgUcaRiabec8a WjaaywW7cqGHaiIicaWGZbGaaGOpaiaadohadaWgaaWcbaGaaGymaa qabaGccaaIUaaaaa@51BC@   

Теорема 2.1 для положительно однородного отображения Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@38DD@  анонсирована в работе [8].

Доказательство утверждений а), б), в) Теоремы 1.3. Пусть P P 2,ω 0 (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@514F@  Без ограничения общности можно считать, что P(t,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacaWG0bGaaGilaiaadMhacaaIPaaaaa@3CEE@  гладко зависит от y. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai6 caaaa@39BD@  Утверждение а) теоремы 1.3 следует из утверждения 2.5.

Для доказательства утверждений б) и в) воспользуемся теоремой 2.1. Из теоремы 2.1 вытекает, что включение P P 2,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaaaaa@5097@  равносильно одному из следующих трех условий:

Условие 2.4. γ 0 (P)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGypaiaaigda aaa@3E5A@  и при любом tR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaabkfaaaa@3B59@  либо

sin θ P (t,s) θ α (s) 0sR, 0 2π cos( θ P (t,s)s) b α (s)sin( θ P (t,s) θ α (s)) ds>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbGaaGykaiabgkHiTiabeI7aXnaaBaaale aacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaaacaGLOaGaayzkaaGa eyiyIKRaaGimaiaaywW7cqGHaiIicaWGZbGaeyicI4SaaeOuaiaaiY cacaaMf8+aa8qmaeqaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGH RiI8aOWaaSaaaeaaciGGJbGaai4BaiaacohacaaIOaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMca cqGHsislcaWGZbGaaGykaaqaaiaadkgadaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH 4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcacaWGZb GaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGik aiaadohacaaIPaGaaGykaaaacaWGKbGaam4Caiaai6dacaaIWaGaaG ilaaaa@81F0@

либо sin θ P (t, s 0 ) θ α ( s 0 ) =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbWaaSbaaSqaaiaaicdaaeqaaOGaaGykai abgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadoha daWgaaWcbaGaaGimaaqabaGccaaIPaaacaGLOaGaayzkaaGaaGypai aaicdaaaa@4D6B@  при некотором s 0 [0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiaaikda cqaHapaCcaaIPaaaaa@40F4@  и

π< θ P (t,s) θ α (s)<πsR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaGipaiabeI7aXnaaBaaaleaacaWGqbaabeaakiaaiIcacaWG 0bGaaGilaiaadohacaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg 7aHbqabaGccaaIOaGaam4CaiaaiMcacaaI8aGaeqiWdaNaaGzbVlab gcGiIiaadohacqGHiiIZcaqGsbGaaGOlaaaa@5203@

Условие 2.5. γ 0 (P)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGypaiaaigda aaa@3E5A@  и при любом tR MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI Giolaabkfaaaa@3B59@  либо

sin θ P (t,s) θ α (s) 0sR, 0 2π cos( θ P (t,s)s) b α (s)sin( θ P (t,s) θ α (s)) ds<0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbGaaGykaiabgkHiTiabeI7aXnaaBaaale aacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaaacaGLOaGaayzkaaGa eyiyIKRaaGimaiaaywW7cqGHaiIicaWGZbGaeyicI4SaaeOuaiaaiY cacaaMf8+aa8qmaeqaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGH RiI8aOWaaSaaaeaaciGGJbGaai4BaiaacohacaaIOaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMca cqGHsislcaWGZbGaaGykaaqaaiaadkgadaWgaaWcbaGaeqySdegabe aakiaaiIcacaWGZbGaaGykaiGacohacaGGPbGaaiOBaiaaiIcacqaH 4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcacaWGZb GaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGik aiaadohacaaIPaGaaGykaaaacaWGKbGaam4CaiaaiYdacaaIWaGaaG ilaaaa@81EE@

либо sin θ P (t, s 0 ) θ α ( s 0 ) =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbWaaeWaaeaacqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbWaaSbaaSqaaiaaicdaaeqaaOGaaGykai abgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadoha daWgaaWcbaGaaGimaaqabaGccaaIPaaacaGLOaGaayzkaaGaaGypai aaicdaaaa@4D6B@  при некотором s 0 [0,2π) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIWaaabeaakiabgIGiolaaiUfacaaIWaGaaGilaiaaikda cqaHapaCcaaIPaaaaa@40F4@  и

0< θ P (t,s) θ α (s)<2πsR. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYca caWGZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaO GaaGikaiaadohacaaIPaGaaGipaiaaikdacqaHapaCcaaMf8Uaeyia IiIaam4CaiabgIGiolaabkfacaaIUaaaaa@50CF@

Условие 2.6. γ 0 (P)<1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGipaiaaigda aaa@3E59@  и ( s n R j 1 целое θ P (t, s 1 ) θ α ( s 1 )=π j 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaayI W7cqGHdicjcaWGZbWaaSbaaSqaaiaad6gaaeqaaOGaeyicI4SaaeOu aiaaysW7caaMe8Uaey4aIqIaamOAamaaBaaaleaacaaIXaaabeaaki abgkHiTiaabAebcaqG1qGaae4oeiaab6dbcaqG1qGaaGzbVlabeI7a XnaaBaaaleaacaWGqbaabeaakiaaiIcacaWG0bGaaGilaiaadohada WgaaWcbaGaaGymaaqabaGccaaIPaGaeyOeI0IaeqiUde3aaSbaaSqa aiabeg7aHbqabaGccaaIOaGaam4CamaaBaaaleaacaaIXaaabeaaki aaiMcacaaI9aGaeqiWdaNaamOAamaaBaaaleaacaaIXaaabeaakiaa yIW7caaIPaaaaa@61DB@   MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4naaa@3A64@   θ P (t,s) θ α (s)<π j 1 +πs> s 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMca cqGHsislcqaH4oqCdaWgaaWcbaGaeqySdegabeaakiaaiIcacaWGZb GaaGykaiaaiYdacqaHapaCcaWGQbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaeqiWdaNaaGzbVlabgcGiIiaadohacaaI+aGaam4CamaaBa aaleaacaaIXaaabeaakiaai6caaaa@536A@  

Пусть выполнены условия 2.4. Построим семейство угловых функций Θ(t,s,λ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGilaaaa @40AA@   λ[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2facaaISaaaaa@3FEC@  непрерывно зависящее от t,s,λ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacaWGZbGaaGilaiabeU7aSjaaiYcaaaa@3DCE@  удовлетворяющее условиям 2.4 при любых фиксированных t,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacqaH7oaBaaa@3B6A@  и Θ(t,s,0)= θ P (t,s), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacaaIWaGaaGykaiaai2dacqaH 4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcacaWGZb GaaGykaiaaiYcaaaa@4744@   Θ(t,s,1)=s. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacaaIXaGaaGykaiaai2dacaWG ZbGaaGOlaaaa@4172@  Этим самым будет доказана гомотопность отображений P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  и Q 1,0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGaaGymaiaaiYcacaaIWaaaaOGaaGOlaaaa@3BF7@  Семейство Θ(t,s,λ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGilaaaa @40AA@   λ[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3F36@  построим следующими формулами:

Θ(t,s,λ)= θ α (s)+(12λ)( θ P (t,s) θ α (s)),λ[0,1/2], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiab eI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaGaey 4kaSIaaGikaiaaigdacqGHsislcaaIYaGaeq4UdWMaaGykaiaaiIca cqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGa aGikaiaadohacaaIPaGaaGykaiaaiYcacaaMf8Uaeq4UdWMaeyicI4 SaaG4waiaaicdacaaISaGaaGymaiaai+cacaaIYaGaaGyxaiaaiYca aaa@67A7@

Θ(t,s,λ)=(22λ) θ α (s)+(2λ1)s,λ[1/2,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiaa iIcacaaIYaGaeyOeI0IaaGOmaiabeU7aSjaaiMcacqaH4oqCdaWgaa WcbaGaeqySdegabeaakiaaiIcacaWGZbGaaGykaiabgUcaRiaaiIca caaIYaGaeq4UdWMaeyOeI0IaaGymaiaaiMcacaWGZbGaaGilaiaayw W7cqaH7oaBcqGHiiIZcaaIBbGaaGymaiaai+cacaaIYaGaaGilaiaa igdacaaIDbGaaGOlaaaa@5F19@

При любых фиксированных t,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacqaH7oaBaaa@3B6A@  функция Θ(t,s,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaaaaa@3FF4@  удовлетворяет условиям 2.4.

Если выполнены условия 2.5, то семейство Θ(t,s,λ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGilaaaa @40AA@   λ[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3F36@  определим формулами

Θ(t,s,λ)= θ α (s)+(12λ)( θ P (t,s) θ α (s))+2λπ,λ[0,1/2], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiab eI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaGaey 4kaSIaaGikaiaaigdacqGHsislcaaIYaGaeq4UdWMaaGykaiaaiIca cqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGa aGikaiaadohacaaIPaGaaGykaiabgUcaRiaaikdacqaH7oaBcqaHap aCcaaISaGaaGzbVlabeU7aSjabgIGiolaaiUfacaaIWaGaaGilaiaa igdacaaIVaGaaGOmaiaai2facaaISaaaaa@6CB6@

Θ(t,s,λ)=(22λ) θ α (s)+(2λ1)s+π,λ[1/2,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiaa iIcacaaIYaGaeyOeI0IaaGOmaiabeU7aSjaaiMcacqaH4oqCdaWgaa WcbaGaeqySdegabeaakiaaiIcacaWGZbGaaGykaiabgUcaRiaaiIca caaIYaGaeq4UdWMaeyOeI0IaaGymaiaaiMcacaWGZbGaey4kaSIaeq iWdaNaaGilaiaaywW7cqaH7oaBcqGHiiIZcaaIBbGaaGymaiaai+ca caaIYaGaaGilaiaaigdacaaIDbGaaGOlaaaa@61B8@

При любых фиксированных t,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacqaH7oaBaaa@3B6A@  функция Θ(t,s,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaaaaa@3FF4@  удовлетворяет условиям 2.5. Отсюда следует гомотопность отображений P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  и Q 1,0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam yuamaaCaaaleqabaGaaGymaiaaiYcacaaIWaaaaOGaaGOlaaaa@3CE4@  Утверждение б) теоремы 1.3 доказано.

Если выполнены условия 2.6, то семейство Θ(t,s,λ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGilaaaa @40AA@   λ[0,1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2faaaa@3F36@  построим следующими формулами:

Θ(t,s,λ)= θ α (s)+(13λ)( θ P (t,s) θ α (s)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiab eI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaGaey 4kaSIaaGikaiaaigdacqGHsislcaaIZaGaeq4UdWMaaGykaiaaiIca cqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiabgkHiTiabeI7aXnaaBaaaleaacqaHXoqyaeqaaOGa aGikaiaadohacaaIPaGaaGykaaaa@5C0A@

+3λmax θ P (t,2π)2π, min 0τs ( θ P (t,τ) θ α (τ)) ,λ[0,1/3], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG 4maiabeU7aSjGac2gacaGGHbGaaiiEamaabmaabaGaeqiUde3aaSba aSqaaiaadcfaaeqaaOGaaGikaiaadshacaaISaGaaGOmaiabec8aWj aaiMcacqGHsislcaaIYaGaeqiWdaNaaGilaiaaywW7daGfqbqabSqa aiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaWGZbaabeGcbaGaciyBai aacMgacaGGUbaaaiaaiIcacqaH4oqCdaWgaaWcbaGaamiuaaqabaGc caaIOaGaamiDaiaaiYcacqaHepaDcaaIPaGaeyOeI0IaeqiUde3aaS baaSqaaiabeg7aHbqabaGccaaIOaGaeqiXdqNaaGykaiaaiMcaaiaa wIcacaGLPaaacaaISaGaaGzbVlabeU7aSjabgIGiolaaiUfacaaIWa GaaGilaiaaigdacaaIVaGaaG4maiaai2facaaISaaaaa@7426@

Θ(t,s,λ)= θ α (s)+(3λ1)( θ P (t,0)+( p 0 1)s) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiab eI7aXnaaBaaaleaacqaHXoqyaeqaaOGaaGikaiaadohacaaIPaGaey 4kaSIaaGikaiaaiodacqaH7oaBcqGHsislcaaIXaGaaGykaiaaiIca cqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcaca aIWaGaaGykaiabgUcaRiaaiIcacaWGWbWaaSbaaSqaaiaaicdaaeqa aOGaeyOeI0IaaGymaiaaiMcacaWGZbGaaGykaaaa@5BC3@

+(23λ)max θ P (t,2π)2π, min 0τs ( θ P (t,τ) θ α (τ)) ,λ[1/3,2/3], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaaikdacqGHsislcaaIZaGaeq4UdWMaaGykaiGac2gacaGGHbGa aiiEamaabmaabaGaeqiUde3aaSbaaSqaaiaadcfaaeqaaOGaaGikai aadshacaaISaGaaGOmaiabec8aWjaaiMcacqGHsislcaaIYaGaeqiW daNaaGilaiaaywW7daGfqbqabSqaaiaaicdacqGHKjYOcqaHepaDcq GHKjYOcaWGZbaabeGcbaGaciyBaiaacMgacaGGUbaaaiaaiIcacqaH 4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcacqaHep aDcaaIPaGaeyOeI0IaeqiUde3aaSbaaSqaaiabeg7aHbqabaGccaaI OaGaeqiXdqNaaGykaiaaiMcaaiaawIcacaGLPaaacaaISaGaaGzbVl abeU7aSjabgIGiolaaiUfacaaIXaGaaG4laiaaiodacaaISaGaaGOm aiaai+cacaaIZaGaaGyxaiaaiYcaaaa@78AC@

Θ(t,s,λ)=(33λ)( θ α (s)+ θ P (t,0))+(3λ2)(2π p 1 t/ω+s)+( p 0 1)s,λ[2/3,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaGaaGypaiaa iIcacaaIZaGaeyOeI0IaaG4maiabeU7aSjaaiMcacaaIOaGaeqiUde 3aaSbaaSqaaiabeg7aHbqabaGccaaIOaGaam4CaiaaiMcacqGHRaWk cqaH4oqCdaWgaaWcbaGaamiuaaqabaGccaaIOaGaamiDaiaaiYcaca aIWaGaaGykaiaaiMcacqGHRaWkcaaIOaGaaG4maiabeU7aSjabgkHi TiaaikdacaaIPaGaaGikaiaaikdacqaHapaCcaWGWbWaaSbaaSqaai aaigdaaeqaaOGaamiDaiaai+cacqaHjpWDcqGHRaWkcaWGZbGaaGyk aiabgUcaRiaaiIcacaWGWbWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0 IaaGymaiaaiMcacaWGZbGaaGilaiaaywW7cqaH7oaBcqGHiiIZcaaI BbGaaGOmaiaai+cacaaIZaGaaGilaiaaigdacaaIDbGaaGilaaaa@78E4@

где p 0 = γ 0 (P), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiuaiaaiMcacaaISaaaaa@403A@   p 1 = γ 1 (P). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiuaiaaiMcacaaIUaaaaa@403E@  При любых фиксированных t,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaaiY cacqaH7oaBaaa@3B6A@  функция Θ(t,s,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG ikaiaadshacaaISaGaam4CaiaaiYcacqaH7oaBcaaIPaaaaa@3FF4@  удовлетворяет условиям 2.6. Отсюда следует гомотопность отображений P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  и Q p 0 , p 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGaamiCamaaBaaabaGaaGimaaqabaGaaGilaiaadchadaWg aaqaaiaaigdaaeqaaaaakiaai6caaaa@3E23@  Утверждение в) теоремы 1.3 доказано.

2.4. Теорема 1.4

Доказательство теоремы 1.4.

Необходимость. Пусть P P 2,ω 0 (α,ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaGaaGilaaaa@514D@   ν>|( α 1 α 2 )sign( γ 1 (P))| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG OpaiaaiYhacaaIOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaabohacaWGPb Gaam4zaiaad6gacaaIOaGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaOGa aGikaiaadcfacaaIPaGaaGykaiaaiYhaaaa@4E00@  и γ 0 (P)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaaGypaiaaicda caaIUaaaaa@3F11@  Покажем, что для такого P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  при некотором f 2,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F32@  система уравнений (0.1) не имеет ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений. Учитывая теоремы 1.2 и 1.3, можно считать, что P= Q α,0, p 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGrbWaaWbaaSqabeaacqaHXoqycaaISaGaaGimaiaaiYcacaWG WbWaaSbaaeaacaaIXaaabeaaaaGccaaIUaaaaa@40FE@  В этом случае система уравнений (0.1) принимает вид

x 1 (t)=|x(t )| *,α α 1 +ν cos 2π p 1 ω t+ f 1 (t, x 1 (t), x 2 (t)), x 2 (t)=|x(t )| *,α α 2 +ν sin 2π p 1 ω t+ f 2 (t, x 1 (t), x 2 (t)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGabaaabaGaamiEamaaBaaaleaaceaIXaGbauaaaeqaaOGaaGik aiaadshacaaIPaGaaGypaiaaiYhacaWG4bGaaGikaiaadshacaaIPa GaaGiFamaaDaaaleaacaaIQaGaaGilaiabeg7aHbqaaiabeg7aHnaa BaaabaGaaGymaaqabaGaey4kaSIaeqyVd4gaaOGaci4yaiaac+gaca GGZbWaaSaaaeaacaaIYaGaeqiWdaNaamiCamaaBaaaleaacaaIXaaa beaaaOqaaiabeM8a3baacaWG0bGaey4kaSIaamOzamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG0bGaaGilaiaadIhadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiDaiaaiMcacaaISaGaamiEamaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiMcacaaISaaabaGaamiE amaaBaaaleaaceaIYaGbauaaaeqaaOGaaGikaiaadshacaaIPaGaaG ypaiaaiYhacaWG4bGaaGikaiaadshacaaIPaGaaGiFamaaDaaaleaa caaIQaGaaGilaiabeg7aHbqaaiabeg7aHnaaBaaabaGaaGOmaaqaba Gaey4kaSIaeqyVd4gaaOGaci4CaiaacMgacaGGUbWaaSaaaeaacaaI YaGaeqiWdaNaamiCamaaBaaaleaacaaIXaaabeaaaOqaaiabeM8a3b aacaWG0bGaey4kaSIaamOzamaaBaaaleaacaaIYaaabeaakiaaiIca caWG0bGaaGilaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iDaiaaiMcacaaISaGaamiEamaaBaaaleaacaaIYaaabeaakiaaiIca caWG0bGaaGykaiaaiMcacaaISaaaaaGaay5Eaaaaaa@92A9@                                                (2.11)

где p 1 = γ 1 (P), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiuaiaaiMcacaaISaaaaa@403C@   |y | *,α =λ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadM hacaaI8bWaaSbaaSqaaiaaiQcacaaISaGaeqySdegabeaakiaai2da cqaH7oaBcaaISaaaaa@4181@  если y=( λ α 1 coss, λ α 2 sins), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaaIOaGaeq4UdW2aaWbaaSqabeaacqaHXoqydaWgaaqaaiaaigda aeqaaaaakiGacogacaGGVbGaai4CaiaadohacaaISaGaeq4UdW2aaW baaSqabeaacqaHXoqydaWgaaqaaiaaikdaaeqaaaaakiGacohacaGG PbGaaiOBaiaadohacaaIPaGaaGilaaaa@4D05@   λ0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey yzImRaaGimaiaai6caaaa@3CF3@

Положим

f 1 (t, y 1 , y 2 )= 2π p 1 ω y 2 +cos 2π p 1 ω t, f 2 (t, y 1 , y 2 )= 2π p 1 ω y 1 +sin 2π p 1 ω t. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadMhadaWgaaWc baGaaGymaaqabaGccaaISaGaamyEamaaBaaaleaacaaIYaaabeaaki aaiMcacaaI9aGaeyOeI0YaaSaaaeaacaaIYaGaeqiWdaNaamiCamaa BaaaleaacaaIXaaabeaaaOqaaiabeM8a3baacaWG5bWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbWaaSaaaeaacaaI YaGaeqiWdaNaamiCamaaBaaaleaacaaIXaaabeaaaOqaaiabeM8a3b aacaWG0bGaaGilaiaaywW7caaMf8UaamOzamaaBaaaleaacaaIYaaa beaakiaaiIcacaWG0bGaaGilaiaadMhadaWgaaWcbaGaaGymaaqaba GccaaISaGaamyEamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aWa aSaaaeaacaaIYaGaeqiWdaNaamiCamaaBaaaleaacaaIXaaabeaaaO qaaiabeM8a3baacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa ci4CaiaacMgacaGGUbWaaSaaaeaacaaIYaGaeqiWdaNaamiCamaaBa aaleaacaaIXaaabeaaaOqaaiabeM8a3baacaWG0bGaaGOlaaaa@7847@

Тогда для любого решения системы (2.11) имеем:

( x 1 (t)cos 2π p 1 ω t+ x 2 (t)sin 2π p 1 ω t ) =|x(t )| *,α α 1 +ν cos 2 2π p 1 ω t+|x(t )| *,α α 2 +ν sin 2 2π p 1 ω t+1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcaciGGJbGa ai4BaiaacohadaWcaaqaaiaaikdacqaHapaCcaWGWbWaaSbaaSqaai aaigdaaeqaaaGcbaGaeqyYdChaaiaadshacqGHRaWkcaWG4bWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaci4CaiaacMgaca GGUbWaaSaaaeaacaaIYaGaeqiWdaNaamiCamaaBaaaleaacaaIXaaa beaaaOqaaiabeM8a3baacaWG0bGabGykayaafaGaaGypaiaaiYhaca WG4bGaaGikaiaadshacaaIPaGaaGiFamaaDaaaleaacaaIQaGaaGil aiabeg7aHbqaaiabeg7aHnaaBaaabaGaaGymaaqabaGaey4kaSIaeq yVd4gaaOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGG ZbaaamaalaaabaGaaGOmaiabec8aWjaadchadaWgaaWcbaGaaGymaa qabaaakeaacqaHjpWDaaGaamiDaiabgUcaRiaaiYhacaWG4bGaaGik aiaadshacaaIPaGaaGiFamaaDaaaleaacaaIQaGaaGilaiabeg7aHb qaaiabeg7aHnaaBaaabaGaaGOmaaqabaGaey4kaSIaeqyVd4gaaOWa aubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaamaala aabaGaaGOmaiabec8aWjaadchadaWgaaWcbaGaaGymaaqabaaakeaa cqaHjpWDaaGaamiDaiabgUcaRiaaigdacaaIUaaaaa@8CB2@

В силу условия ν>|( α 1 α 2 )sign( p 1 )| MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4MaaG OpaiaaiYhacaaIOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaabohacaWGPb Gaam4zaiaad6gacaaIOaGaamiCamaaBaaaleaacaaIXaaabeaakiaa iMcacaaI8baaaa@4B14@  справедливо включение f=( f 1 , f 2 ) 2,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dacaaIOaGaamOzamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGMbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiabgIGioprr1ngBPrMrYf2A0v NCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFCeIudaWgaaWcbaGaaGOm aiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg7aHjaaiYcacqaH9oGBca aIPaGaaGOlaaaa@5685@  Следовательно, при таком f 2,ω (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaaaaa@4F32@  система уравнений (2.11) не имеет ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодических решений.

Достаточность. Пусть P P 2,ω 0 (α,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF papudaqhaaWcbaGaaGOmaiaaiYcacqaHjpWDaeaacaaIWaaaaOGaaG ikaiabeg7aHjaaiYcacqaH9oGBcaaIPaaaaa@5097@  и γ 0 (P)0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaaicdaaeqaaOGaaGikaiaadcfacaaIPaGaeyiyIKRaaGim aiaai6caaaa@4011@  Покажем, что для рассматриваемого P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@38DC@  система (0.1) имеет ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодическое решение при любом f 2,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@4FEA@  Учитывая теоремы 1.2 и 1.3, можно считать, что P= Q α, p 0 , p 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaWGrbWaaWbaaSqabeaacqaHXoqycaaISaGaamiCamaaBaaabaGa aGimaaqabaGaaGilaiaadchadaWgaaqaaiaaigdaaeqaaaaakiaaiY caaaa@4212@  где p 0 = γ 0 (P), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiuaiaaiMcacaaISaaaaa@403A@   p 1 = γ 1 (P). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaaabeaakiaai2dacqaHZoWzdaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiuaiaaiMcacaaIUaaaaa@403E@  В этом случае система уравнений (0.1) принимает вид x 1 (t)= Q 1 α, p 0 , p 1 (t, x 1 (t), x 2 (t))+ f 1 (t, x 1 (t), x 2 (t)), x 2 (t)= Q 2 α, p 0 , p 1 (t, x 1 (t), x 2 (t))+ f 2 (t, x 1 (t), x 2 (t)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeGabaaabaGaamiEamaaBaaaleaaceaIXaGbauaaaeqaaOGaaGik aiaadshacaaIPaGaaGypaiaadgfadaqhaaWcbaGaaGymaaqaaiabeg 7aHjaaiYcacaWGWbWaaSbaaeaacaaIWaaabeaacaaISaGaamiCamaa BaaabaGaaGymaaqabaaaaOGaaGikaiaadshacaaISaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiabgU caRiaadAgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYca caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaG ilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMca caaIPaGaaGilaaqaaiaadIhadaWgaaWcbaGabGOmayaafaaabeaaki aaiIcacaWG0bGaaGykaiaai2dacaWGrbWaa0baaSqaaiaaikdaaeaa cqaHXoqycaaISaGaamiCamaaBaaabaGaaGimaaqabaGaaGilaiaadc hadaWgaaqaaiaaigdaaeqaaaaakiaaiIcacaWG0bGaaGilaiaadIha daWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaISaGaam iEamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiMca cqGHRaWkcaWGMbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aISaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGyk aiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaaGykaiaai6caaaaacaGL7baaaaa@8CCC@  (2.12)

Существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы уравнений (2.12) равносильно существованию нуля вполне непрерывного векторного поля

Φ(x)x(t)x(ω) 0 t Q α, p 0 , p 1 (s,x(s))+f(s,x(s)) ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhacaaIPaGaeyyyIORaamiEaiaaiIcacaWG0bGaaGykaiab gkHiTiaadIhacaaIOaGaeqyYdCNaaGykaiabgkHiTmaapedabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakmaabmaabaGaamyuamaaCaaa leqabaGaeqySdeMaaGilaiaadchadaWgaaqaaiaaicdaaeqaaiaaiY cacaWGWbWaaSbaaeaacaaIXaaabeaaaaGccaaIOaGaam4CaiaaiYca caWG4bGaaGikaiaadohacaaIPaGaaGykaiabgUcaRiaadAgacaaIOa Gaam4CaiaaiYcacaWG4bGaaGikaiaadohacaaIPaGaaGykaaGaayjk aiaawMcaaiaadsgacaWGZbaaaa@64C1@

в банаховом пространстве C([0,ω]; R 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaaikdaaaGccaaIPaaaaa@41CA@  с нормой x:= max 0tω |x(t)|. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaaiQdacaaI9aWaaube aeqaleaacaaIWaGaeyizImQaamiDaiabgsMiJkabeM8a3bqabOqaai Gac2gacaGGHbGaaiiEaaaacaaI8bGaamiEaiaaiIcacaWG0bGaaGyk aiaaiYhacaaIUaaaaa@5183@

Из теоремы 1.1 вытекает, что векторное поле Φ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhacaaIPaaaaa@3BE3@  не обращается в ноль вне шара x<r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaaiYdacaWGYbaaaa@4195@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@4282@  Поэтому, согласно теории векторных полей [3, с. 135], определена целочисленная характеристика γ (Φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdyKaaGykaaaa@3E34@  - вращение векторного поля Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeaaa@3981@  на сфере x=r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaai2dacaWGYbaaaa@4196@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@4282@  Покажем, что

γ (Φ)0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdyKaaGykaiabgcMi5kaa icdacaaIUaaaaa@416D@  (2.13)

Тогда согласно принципу ненулевого вращения [3, с. 141] имеет место равенство Φ( x 0 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaaicda aaa@3E54@  при некоторой вектор-функции x 0 C([0,ω]; R 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiabgIGiolaadoeacaaIOaGaaG4waiaaicda caaISaGaeqyYdCNaaGyxaiaaiUdacaqGsbWaaWbaaSqabeaacaaIYa aaaOGaaGykaiaai6caaaa@45F3@  Этим самым будет доказано существование ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@39D4@  -периодического решения системы уравнений (2.12) при любом f 2,ω (α,ν). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI Gioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF CeIudaWgaaWcbaGaaGOmaiaaiYcacqaHjpWDaeqaaOGaaGikaiabeg 7aHjaaiYcacqaH9oGBcaaIPaGaaGOlaaaa@4FEA@

Из теоремы 1.1 следует, что семейство векторных полей

Φ μ (x)x(t)x(ω) 0 t Q α, p 0 , p 1 (s,x(s))+μf(s,x(s)) ds,μ[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiabeY7aTbqabaGccaaIOaGaamiEaiaaiMcacqGHHjIUcaWG 4bGaaGikaiaadshacaaIPaGaeyOeI0IaamiEaiaaiIcacqaHjpWDca aIPaGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8 aOWaaeWaaeaacaWGrbWaaWbaaSqabeaacqaHXoqycaaISaGaamiCam aaBaaabaGaaGimaaqabaGaaGilaiaadchadaWgaaqaaiaaigdaaeqa aaaakiaaiIcacaWGZbGaaGilaiaadIhacaaIOaGaam4CaiaaiMcaca aIPaGaey4kaSIaeqiVd0MaamOzaiaaiIcacaWGZbGaaGilaiaadIha caaIOaGaam4CaiaaiMcacaaIPaaacaGLOaGaayzkaaGaamizaiaado hacaaISaGaaGzbVlabeY7aTjabgIGiolaaiUfacaaIWaGaaGilaiaa igdacaaIDbGaaGilaaaa@728E@

не обращается в ноль вне шара x<r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaaiYdacaWGYbaaaa@4195@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@4282@  Другими словами, векторные поля Φ= Φ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyKaaG ypaiabfA6agnaaBaaaleaacaaIWaaabeaaaaa@3CA8@  и Φ 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdy0aaS baaSqaaiaaigdaaeqaaaaa@3A68@  гомотопны на сфере x=r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEaiab=vIiqjaai2dacaWGYbaaaa@4196@  большого радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  пространства C([0,ω]; R 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaaIBbGaaGimaiaaiYcacqaHjpWDcaaIDbGaaG4oaiaabkfadaah aaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@4282@  Поэтому, согласно свойству сохранения вращения при гомотопии, имеем:

γ (Φ)= γ ( Φ 0 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdyKaaGykaiaai2dacqaH ZoWzdaWgaaWcbaGaeyOhIukabeaakiaaiIcacqqHMoGrdaWgaaWcba GaaGimaaqabaGccaaIPaGaaGOlaaaa@46D0@  (2.14)

Семейство вполне непрерывных векторных полей

Ψ μ (x)x(t)x(ω) 0 t Q α ˜ (μ), p 0 , p 1 (s,x(s))ds,μ[0,1], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiabeY7aTbqabaGccaaIOaGaamiEaiaaiMcacqGHHjIUcaWG 4bGaaGikaiaadshacaaIPaGaeyOeI0IaamiEaiaaiIcacqaHjpWDca aIPaGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8 aOGaamyuamaaCaaaleqabaGafqySdeMbaGaacaaIOaGaeqiVd0MaaG ykaiaaiYcacaWGWbWaaSbaaeaacaaIWaaabeaacaaISaGaamiCamaa BaaabaGaaGymaaqabaaaaOGaaGikaiaadohacaaISaGaamiEaiaaiI cacaWGZbGaaGykaiaaiMcacaWGKbGaam4CaiaaiYcacaaMf8UaeqiV d0MaeyicI4SaaG4waiaaicdacaaISaGaaGymaiaai2facaaISaaaaa@6A54@

где α ˜ (μ)=(1μ)α+μ(1,1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqySdeMbaG aacaaIOaGaeqiVd0MaaGykaiaai2dacaaIOaGaaGymaiabgkHiTiab eY7aTjaaiMcacqaHXoqycqGHRaWkcqaH8oqBcaaIOaGaaGymaiaaiY cacaaIXaGaaGykaiaaiYcaaaa@4AD8@  не обращается в ноль при x(t) 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaaiI cacaWG0bGaaGykaiqbggMi6AaawaGaaGimaiaai6caaaa@3EBA@  Это следует из включения Q α ˜ (μ), p 0 , p 1 P 2,ω 0 ( α ˜ (μ),ν), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaCa aaleqabaGafqySdeMbaGaacaaIOaGaeqiVd0MaaGykaiaaiYcacaWG WbWaaSbaaeaacaaIWaaabeaacaaISaGaamiCamaaBaaabaGaaGymaa qabaaaaOGaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A 0vNCaGqbaiab=9a8qnaaDaaaleaacaaIYaGaaGilaiabeM8a3bqaai aaicdaaaGccaaIOaGafqySdeMbaGaacaaIOaGaeqiVd0MaaGykaiaa iYcacqaH9oGBcaaIPaGaaGilaaaa@5E85@  которое верно при любом μ[0,1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey icI4SaaG4waiaaicdacaaISaGaaGymaiaai2facaaIUaaaaa@3FF0@  Отсюда выводим

γ ( Φ 0 )= γ ( Ψ 1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuOPdy0aaSbaaSqaaiaaicda aeqaaOGaaGykaiaai2dacqaHZoWzdaWgaaWcbaGaeyOhIukabeaaki aaiIcacqqHOoqwdaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGOlaaaa @47D6@  (2.15)

В работе [7] доказано, что γ ( Ψ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiabg6HiLcqabaGccaaIOaGaeuiQdK1aaSbaaSqaaiaaigda aeqaaOGaaGykaaaa@3F3A@  равно p 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaaaaa@39E2@  или 1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 caaaa@397A@  Учитывая это и условие p 0 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIWaaabeaakiabgcMi5kaaicdacaaISaaaaa@3D23@  из (2.14) и (2.15) получаем (2.13).

Авторы выражают искреннюю благодарность профессору Э. Мухамадиеву за обсуждение результатов работы и высказанные замечания.

×

About the authors

Alizhon N. Naimov

Vologda State University

Author for correspondence.
Email: naimovan@vogu35.ru
ORCID iD: 0000-0002-6194-7164

Doctor of Physics and Mathematics, Professor of the Mathematics and Informatics Department

Russian Federation, 15 Lenin St., Vologda 160000

Mikhail V. Bystretskii

Vologda State University

Email: pmbmv@bk.ru
ORCID iD: 0009-0004-3192-0675

Junior Researcher

Russian Federation, 15 Lenin St., Vologda 160000

References

  1. Э. Мухамадиев, “К теории периодических решений систем обыкновенных дифференциальных уравнений”, Докл. АН СССР, 194:3 (1970), 510–513; англ. пер.:E. Mukhamadiev, “On the theory of periodic solutions of systems of ordinary differential equations”, Sov. Math., Dokl., 11 (1970), 1236–1239.
  2. Э. Мухамадиев, А. Н. Наимов, “О разрешимости периодической задачи для системы обыкновенных дифференциальных уравнений с главной положительно однородной нелинейностью”, Дифференциальные уравнения, 59:2 (2023), 280–282; англ. пер.:E. Mukhamadiev, A. N. Naimov, “On the solvability of a periodic problem for a system of ordinary differential equations with the main positive homogeneous nonlinearity”, Differential Equations, 59:2 (2023), 289–291.
  3. М. А. Красносельский, П. П. Забрейко, Геометрические методы нелинейного анализа, Наука, М., 1975. [M. A. Krasnosel’skiy, P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian)].
  4. Ж. Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972. [J. L. Lyons, Some Methods for Solving Nonlinear Boundary Value Problems, Nauka Publ., Moscow, 1972 (In Russian)].
  5. В. Г. Звягин, С. В. Корнев, “Метод направляющих функций в задаче о существовании периодических решений дифференциальных уравнений”, Современная математика. Фундаментальные направления, 58:1 (2015), 59–81; англ. пер.:V. G. Zvyagin, S. V. Kornev, “Method of guiding functions for existence problems for periodic solutions of differential equations”, Journal of Mathematical Sciences, 233:4 (2018), 578–601.
  6. А. И. Перов, В. К. Каверина, “Об одной задаче Владимира Ивановича Зубова”, Дифференциальные уравнения, 55:2 (2019), 269–272; англ. пер.:A. I. Perov, V. K. Kaverina, “On a problem posed by Vladimir Ivanovich Zubov”, Differential Equations, 55:2 (2019), 274–278.
  7. Э. Мухамадиев, А. Н. Наимов, М. М. Кобилзода, “О разрешимости одного класса периодических задач на плоскости”, Дифференциальные уравнения, 57:2 (2021), 203–209; англ. пер.:E. Mukhamadiev, A. N. Naimov, M. M. Kobilzoda, “Solvability of a class of periodic problems on the plane”, Differential Equations, 57:2 (2021), 189–195.
  8. Н. А. Бобылев, “О построении правильных направляющих функций”, Докл. АН СССР, 183:2 (1968), 265–266; англ. пер.:N. A. Bobylev, “The construction of regular guiding functions”, Sov. Math., Dokl., 9 (1968), 1353–1355.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».