ρ–F contraction fixed point theorem

Cover Page

Cite item

Full Text

Abstract

In this paper, we study the question of conditions for the existence and uniqueness of a fixed point of a mapping over a complete metric space. We first discuss the concepts of F-contraction and F*-contraction in fixed point theory. These concepts, developed respectively by Wardowski and Piri with Kumam, have catalyzed significant research in various metric spaces. We then propose a generalization of these concepts, ρF-contraction and ρF*-contraction, and demonstrate its effectiveness in ensuring the existence and uniqueness of fixed points. This new approach provides greater flexibility by including a function ρ that modulates the contraction, extending the applicability of F- and F*-contractions. We conclude the paper with an example of a mapping that is a ρF-contraction and a ρF*-contraction, respectively, and has a unique fixed point. However, this mapping does not satisfy the conditions of Wardowski and the conditions of Piri and Kumam.

Full Text

Introduction

The introduction of two distinct approaches to the concept of F-contraction and F*-contraction, whereas F* stands out as an adaptation of the F-contraction [1], developed respectively by Wardowski [2] and Piri with Kumam on [3] and authors on [4], has catalyzed significant research in the field of fixed point theories[5]. These approaches have found extensive applications in a multitude of metric spaces, such as b-metric, conic, partial, and fuzzy spaces, among others [6–10]. Essentially, this concept guarantees the existence of a fixed point S:XX, where (X,d) represents a complete metric space. The  and  have the possibility of assimilating these two contractions to well-established contractions such as Boyd–Wong [11] and Matkowski [12], for this, we must ensure certain conditions. Once S satisfies the following property, known as the F-contraction mapping:

τ>0,x,yX,SxSy,F(d(Sx,Sy))+τ<F(d(x,y)),

where F:[0,+) is assumed to satisfy the following F[] conditions: [1]

  • (1F): F is strictly increasing, i.e,
  • (2F)limt0+F(t)=,
  • (3F): There exists k(0,1), such that limt0+tkF(t)=0, 

or we use the F*[] conditions [12], which means that F verifies (1F), (2F) and 

  • (3F*): F is a continuous function in (0,+).

However, while this theory represents great mathematical interest, it has seen numerous different applications and a strong attraction for scientific research. We find that Awais et al [13] establish fixed-point results for F-contractions of Reich type for single-valued and multivalued applications in complete metric spaces. Sahil et al [14] introduced the notion of generalized F-contraction and established fixed point theorems for this type of functions in complete metric spaces. They also explore F-expansions and their applications. We find also Inayat et al [15] establish fixed-point results for generalized F-contractions in complete metric spaces. They generalize and unify several known results in the literature. But, Meir Keeler [16] addresses fixed-point results for a class of contractions in metric spaces. He demonstrates that F-contractions (and F*-contractions) fall under the category of Meir–Keeler contractions. Many results derived from F-contractions also apply to Meir–Keeler mappings.

Whereas, Zhukovskiy [17] extends the fixed point theory to f-quasimetric spaces, particularly generalizing the concept of F-contraction. Unlike the classic -contraction proposed by Wardowski, where the parameter τ is constant, the article introduces a generalized version where τ is a variable function that depends on F(d(x,y)). As illustrated in [17, example 7], this new formulation allows τ to vary based on the distance between two points x and y, providing greater flexibility in analyzing contractions within nonsymmetric metric spaces. This generalization maintains key results, such as the existence of a unique fixed point and convergence of iterations towards that point, while broadening the scope to f-quasimetric spaces.

Our objective is to introduce a new class of contraction, ρF-contraction condition defined, for ρ:, as follows:

x,yX  d(x,y)>0F(d(Sx,Sy))ρ(F(d(x,y))).

This relation only indicates that it can be a generalization of F-contraction with ρ(t)=tτ, t.

 These assumptions are as follows: 

  • (1R): ρ is increasing,
  • (2R): ρ is continuous,
  • (3R): For all t, ρ(t)<t. 

In this work, we will demonstrate that the hypotheses (1R),(2R),(3R) are sufficient with the class F[] and F*[] to ensure the existence of a fixed point for an operator S.

1. Preliminaries

Our goal is to demonstrate that if S is a ρF-contraction, where F is either of class F[] or of class F*[] and ρ satisfies (1R), (2R) and (3R), then S has a unique fixed point. But before beginning all this, we need the result presented by the following lemma.

Lemma 1.1. Suppose that ρ: is verifying (1R),(2R) and (3R), then,

tlimn+ρn(t)=.

Proof. Suppose that there exists t0, such that,

limn+ρn(t0)=M.

We define the sequence tnn0 by t0 chosen in  and tn+1=ρ(tn), for all n0. This means that limn+tn=M. Using (2R) we get,

limn+tn+1=ρ(limn+tn)M=ρ(M).

And this is a contradiction with (3R).

2. ρF*-contraction

In this section, we show that the class of function ρ[] is compatible with the F*[+] to ensure the existence and the unicity for a mapping S through the new condition ρF-contraction. 

Theorem 2.1. Let (X,d) be a complete metric space. Let S:XX and for ρ verifying (1R),(2R) and (3R), FF*[], 

x,yX  d(x,y)>0F(d(Sx,Sy))ρ(F(d(x,y))).

Then, S has a unique fixed point xX and

x0Xlimn+Snx0=x.

Proof. For x0X, we define the sequence {xn}n0 given by xn+1=Sxn for all n0. We remark that if exists n00, xn0=Sxn0 then xn0 will be the fixed point x. Now, suppose that for all n0, d(xn,Sxn)>0. We obtain,

F(d(xn,Sxn))=F(d(Sxn1,Sxn))ρ(F(d(xn1,xn))).

Applying (1ρ) n-times we find

F(d(xn,Sxn))ρ(F(d(xn1,xn)))ρ2(F(d(xn2,xn1)))ρn(F(d(x0,x1))).

Then, using Lemma 1.1,

limn+F(d(xn,Sxn))=limn+ρn(F(d(x0,x1)))=,

and by (2F) we conclude that

limn+d(xn,Sxn)=0.

Now to obtain the fixed point we have to show that xnn0 is a Cauchy sequence.

We suppose the existence of some ε>0 and two sequences of natural numbers φ(n)n0 and ψ(n)n0 such that:

n0  φ(n)>ψ(n)>n,  d(xφ(n),xψ(n))ε,  d(xφ(n)1,xψ(n))<ε.

We obtain,

 εd(xφ(n),xψ(n))d(xφ(n),xφ(n)1)+d(xφ(n)1,xψ(n))

d(xφ(n),xφ(n)1)+ε=d(xφ(n)1,Sxφ(n)1)+ε.

But,

limn+d(xφ(n)1,Sxφ(n)1)=0limn+d(xφ(n),xψ(n))=ε.

On the other hand and using limn+d(xn,Sxn)=0, we can conclude the existence of n00, 

nn0  d(xφ(n),Sxφ(n))<ε4,  d(xψ(n),Sxψ(n))<ε4.

Now, we show that

nn0  d(xφ(n)+1,xψ(n)+1)=d(Sxφ(n),Sxψ(n))>0. (2.1)

In fact, suppose mn0, such that

d(xφ(m)+1,xψ(m)+1)=0.

Then,

εd(xφ(m),xψ(m))d(xφ(m),Sxφ(m))+d(xφ(m)+1,xψ(m)+1)+d(Sxψ(m),xψ(m))

ε4+0+ε4=ε2.

Which is a contradiction. From (2.1) and using ρF-contraction hypothesis, we obtain

F(d(Sxφ(n),Sxψ(n)))ρ(F(d(xφ(n),xψ(n)))).

Then

F(ε)ρ(F(ε))<F(ε).

The last contradiction allows us to confirm that xnn is a Cauchy sequence converging to x. Then

d(Sx,x)=limn+d(Sxn,xn)=0x=Sx.

Suppose now that there exists another fixed point for S denoted y, i.e. y=Sy, and xyd(x,y)>0. Now,

F(d(x,y))=F(d(Sx,Sy))ρF(d(x,y))<F(d(x,y)),

which is a contradiction, then S has a unique fixed point x.

3. ρF-contraction

Our objective now is to show that the family of conditions (ρ1), (ρ2) and (ρ3) ensure, for a ρF-contraction mapping S, a unique fixed point, when F is in the class F[+]. To achieve our goal, we add a condition on ρ

β>1  t  nP(t)|ρn(t)|β<, (3.1)

where P(t) is the smaller natural such that, ρP(t)(t)<0.

Theorem 3.1. Let (X,d) be a complete metric space and S:XX be a ρF-contraction. Then S has a unique fixed point x, i. e.

x=Sx   and    x0X  limn+Snx0=x.

Proof. For x0X, n, we introduce the positif real sequence {an}n0 by

an=d(xn,Sxn)=d(xn,xn+1),

where {xn}n0X is given by x0X and xn+1=Sxn n0. If there exists n00 such an0=0, then xn0=Sxn0 is the fixed point.

Now, suppose that an>0, for all n0. Using the ρF-contraction hypothesis, we obtain

F(an)ρ(F(an1))ρ2(F(an2))ρn(F(a0)).

Then,

limn+F(an)=limn+ρn(F(a0))=,

and

limn+an=0.

Let

 np(F(a0)),

then

ankF(an)ankρn(F(a0))0limn+ankρn(F(a0))=0.

We take nNP(F(a0)), N bigger enough such that,

|ankρ(F(a0))|1an|ρn(F(a0))|1k,

then, for all m>n>N, 

d(xm,xn)d(xm,xm1)+d(xm1,xm2)++d(xn+1,xn)nN|ρn(F(a0))|1k0.

Then, {xn}n0 is a Cauchy sequence and it is converging to x in X. It is clear that x is a fixed point of S. Suppose now that yX is also a fixed point of S. Then,

F(d(x,y))=F(d(Tx,Ty))ρ(F(d(x,y)))<F(d(x,y)),

which is a contraction. Then, S has a unique fixed point.

3. Illustration

Let X={xn|n=1,2,,} and define the metric d:XX as follows: for m>n d(xn,xm)=d(xm,xn)=1n, and d(xn,xn)=0.

Let S:XX be defined by S(xn)=xn+1. Then we have:

d(S(xn),S(xm))=1n+1,

and

d(S(xn),S(xm))d(xn,xm)=nn+11,  n.

Therefore, S is not an ordinary contraction. Let’s define the function F(d)=lnd, which satisfies the conditions F[] and F*[].

Now, let’s compute τ:

τ=F(d(S(xn),S(xm)))+F(d(xn,xm))=ln1n+1+ln1n=lnn+1n0,  n.

This implies that S does not satisfy the conditions of the Wardowski and Piri–Kumam theorems (where τ>0). Let us show that S satisfies the conditions of the theorems proven in this article.

Now, let the function ρ(t)=lnetet+1=tln(et+1). This function is increasing as:

ρ'(t)=1etet+1=1et+1>0.

Furthermore, ρ(t)<t for t>0, and ρ is continuous. Thus, ρ verified all conditions (ρ1), (ρ2) and (ρ3).

Finally, we have:

ρ(F(d(xn,xm)))=ρ(F(1n))=ρ(ln1n)=ln(eln1neln1n+1)=ln1n+1=F(d(Sxn,Sxm)).

We have introduced the concept of ρF-contraction, which extends the classic F-contraction. This new approach is crucial because it generalizes fixed-point results in metric spaces by incorporating a function p that adjusts the contracting behavior of the F-function. This generalization is important as it not only covers traditional F-contractions but also broader versions like those of Wardowski and Piri–Kumam, offering greater flexibility in constructing unique fixed points and analyzing contractive behaviors in various contexts.

As a future direction, it would be interesting to apply this notion of ρF-contraction to f-quasimetric spaces [17], where distances are not necessarily symmetric. This would open up the exploration of new classes of contractive mappings and further validate the effectiveness of this generalized approach in more complex spaces, where distances may be asymmetric or only partially defined.

Acknowledgment: We would like to thank to the editor and reviewer for their great assistance and remarks proposed to improve our paper.

×

About the authors

Randa Chakar

Larbi Ben M’Hidi University

Email: chaker.doudi24@gmail.com
ORCID iD: 0009-0009-4079-876X

Post-Graduate Student, Laboratory of Dynamical Systems and Control

Algeria, BP. 358 Constantine’s Route, 04000 Oum El Bouaghi

Sofiane Dehilis

Larbi Ben M’Hidi University

Email: dehilissofiane@yahoo.fr
ORCID iD: 0000-0002-8771-5046

PhD, Associate Professor of Mathematics and Computer Science Department, Laboratory of Dynamical Systems and Control

Algeria, BP. 358 Constantine’s Route, 04000 Oum El Bouaghi

Wassim Merchela

Mustapha Stambouli University; 8 May 1945 University

Author for correspondence.
Email: merchela.wassim@gmail.com
ORCID iD: 0000-0002-3702-0932

Candidate of Physical and Mathematical Sciences, Associate Professor of Mathematics Department

Algeria, BP. 305 Sheikh El Khaldi Av., 29000 Mascara; BP. 401, 24000 Guelma

Hamza Guebbai

8 May 1945 University

Email: guebaihamza@yahoo.fr
ORCID iD: 0000-0001-8119-2881

Professor, Professor of Mathematics Department

Algeria, BP. 401, 24000 Guelma

References

  1. N. Secelean, D. Wardowski, “New fixed point tools in non-metrizable spaces”, Results in Mathematics, 72:3 (2017), 919–935.
  2. D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory and Applications, 94 (2012), Article number: 94(2012).
  3. H. Piri, P. Kumam, “Some fixed point theorems concerning F -contraction in complete metric spaces”, FFixed Point Theory and Applications, 210 (2014), Article number: 210(2014).
  4. E. Karapinar, M. A. Kutbi, H. Piri, D. O’Regan, “Fixed points of conditionally F -contractions in complete metric-like spaces”, Fixed Point Theory and Applications, 126 (2015), Article number: 126(2015).
  5. J. Z. Vujakovi, S. N. Radenovic, “On some F -contraction of Piri-Kumam-Dung-type mappings in metric spaces”, Military Technical Courier, 68:4 (2020), 697–714.
  6. S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations int´egrales”, Fundamenta Mathematicae, 3:1 (1922), 133–181.
  7. M.A. Alghamdi, N. Hussain, P. Salimi, “Fixed point and coupled fixed point theorems on b-metric-like spaces”, Journal of Inequalities and Applications, 2013 (2013), Article number: 402.
  8. S. Jankovic, Z. Kadelburg, S. Radenovic, “On cone metric spaces: A survey”, Nonlinear Analysis: Theory, Methods & Applications, 74:7 (2011), 2591–2601.
  9. T. G. Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Analysis: Theory, Methods & Applications, 65:7 (2006), 1379-1393.
  10. D. Turkoglu, C. Alaca, Y. J. Cho, C. Yildiz, “Common fixed point theorems in intuitionistic fuzzy metric spaces”, Journal of Applied Mathematics and Computing, 22:1–1 (2006), 411–424.
  11. I. Arandjelovic, Z. Kadelburg, S. Radenovic, “Boyd-Wong-type common fixed point results in cone metric spaces”, Applied Mathematics and Computation, 217:17 (2011), 7167–7171.
  12. C. Bylka, “Fixed point theorems of Matkowski on probabilistic metric spaces”, Demonstratio Mathematica, 29:1 (1996), 159–164.
  13. A. Awais, M. Nazam, M. Arshad, S. O. Kim, “F -metric, F -contraction and common fixed-point theorems with applications”, Mathematics, 7:7 (2019), Article number: 586.
  14. A. Sahil, M. Masta, M. Poonia, “Fixed point theorems for generalized orthogonal F-contraction and F -expansion of Wardowski kind via the notion of ψ-fixed point”, International Journal of Nonlinear Analysis and Applications, 14:2 (2023), 221–231.
  15. J. Ahmad, J. Al-Rawashdeh, A. Azam, “New fixed point theorems for generalized F- contractions in complete metric spaces”, Fixed Point Theory and Algorithms for Sciences and Engineering, 80 (2015), 1–18.
  16. M. Cvetkovic, “The relation between F-contraction and Meir-Keeler contraction”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), Article number: 39.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».