Decomposition of modules over generalized Dickson algebras

Cover Page

Cite item

Full Text

Abstract

The article is devoted to modules over generalized Dickson algebras. These algebras are nonassociative and generally can be nonalternative. They compose an important class of algebras and an area in mathematics. Left, right and two-sided modules over generalized Dickson algebras are studied. Their structure and submodules are investigated. Bimodules with involution are scrutinized over generalized Dickson algebras with involution. Such bimodules have specific features caused by involution. Minimal submodules and decomposition of modules are investigated. In particular, cyclic submodules are studied.

Full Text

Introduction

Dickson algebras compose a great class of nonassociative algebras (see [1, 2]). They are formed by induction using a doubling procedure of a smashed product (see 3–6] and references therein). This class of algebras is the generalization of the octonion (Cayley) algebra. There are wide-spread applications of Dickson algebras in the theory of Lie groups and algebras (see [7–11]) and their generalizations (see [12]), noncommutative mathematical analysis, non-commutative geometry (see [13, 14]), operator theory (see [15, 16]), PDE (see [17]), elementary particle physics and quantum field theory (see [18]). In the aforementioned areas naturally modules over Dickson algebras are very important, but they are only a little studied.

In this article left, right and two-sided modules over generalized Dickson algebras are studied. They are complicated in comparison with alternative algebras. Specific definitions and notations are given (see Definitions 1.1, 1.2, 1.3, 2.1, 2.2, Remark 1.1), because generalized Dickson algebras are neither associative nor alternative. Structure of modules and submodules over generalized Dickson algebras are investigated. For this purpose auxiliary Lemmas 1.1, 1.2, Corollaries 1.1, 1.2, Examples 1.1 and 2.1 are provided. Dickson algebras posses very important involution property. Therefore bimodules with involution are studied in Section 1. Bimodules with an involution are scrutinized in Theorems 1.1, 1.2, Corollary 1.3. For them necessary and sufficient conditions are elucidated. Identities in them are studied in Proposition 1.1. Subbimodules are investigated in Theorem 1.3 and Corollaries 1.4, 1.5. Relations between left, right and two-sided modules over Dickson algebras are given in Corollary 1.6 and Remark 1.3. Bimodules which are not bimodules with involution also are studied (see Proposition 1.2). Left subbimodules are investigated in Theorem 1.4, Proposition 1.3, Corollary 1.7. In particular, cyclic submodules are studied.

All main results of this paper are obtained for the first time.

1. Modules over generalized Dickson algebras

To avoid misunderstandings we recall necessary definitions and notations in Definition 1.1 and Remark 1.1 (see also [1, 3, 4] and Appendix).

Definition 1.1. Assume that F is an associative commutative and unital ring. Then over F a unital algebra A is considered, which may be generally nonassociative (relative to multiplication A×AA). Assume that A is supplied with a scalar involution aa¯ so that its norm N and trace T maps have values in F and fulfil conditions:

aa¯=N(a)1   with   N(a)F, (1.1)

a+a¯=T(a)1   with   T(a)F, (1.2)

T(ab)=T(ba) (3)

for each a and b in A.

If a scalar fF satisfies the condition: aA fa=0a=0, then such element f is called cancelable. Using a cancelable scalar f the Dickson doubling procedure provides new algebra C(A,f) over F such that:

C(A,f)=AAl, (1.4)

(a+bl)(c+dl)=(acfd¯b)+(da+bc¯)l  and (1.5)

(a+bl)¯=a¯bl (1.6)

for each a and b in A. Then l is called a doubling generator.

Remark 1.1. From Definition 1.1 identities follow: aA bA T(a)=T(a+bl) and N(a+bl)=N(a)+fN(b). The algebra A is embedded into C(A,f) as Aa(a,0), where (a,b)=a+bl. It is put by induction An(f(n))=C(An1,fn), where A0=A, f1=f, n=1,2,, f(n)=(f1,,fn). Then An(f(n)) are generalized Dickson algebras, when F is not a field, or Dickson algebras, when F is a field, where 1nN.

If the characteristic of F is char(F)2, then the imaginary part of a Dickson number z is defined by:

Im(z)=zT(z)/2,

hence N(a):=N2(a,a¯)/2, where N2(a,b):=T(ab¯).

If the doubling procedure starts from A=F1=:A0, then A1=C(A,f1) is a -extension of F

We consider also the following generalizations of the Dickson algebras. Let F be a commutative associative unital ring of characteristic

char(F)2; (1.7)

an algebra B has a structure of a F-bimodule with

x+y=y+x,  (x+y)+z=x+(y+z),a(a1x)=(aa1)x,  (xa1)a=x(aa1)   andsuchthat   ax=xa, (1.8)

for each a and a1 in F, x, y and z in B, B as the F-bimodule is free and isomorphic with the direct sum

BjnFij (1.9)

with elements ijB for each j=0,,n, satisfying Tkil=ξk,lil, where Tkx=(ikx)ik, ξk,lF for each k, l in {0,1,2,,n}, x in B, where n>2 is a natural number,

ξ=(ξk,l)k,l=1,,n+1 (1.10)

is a (n+1)×(n+1) matrix having matrix elements ξk,l such that the corresponding F-linear operator is invertible.

It will frequently be useful also the additional condition

ijij=vji0 (1.11)

with nonzero cancelable vj in F possessing an inverse vj1F for each j=0,,n.

Lemma 1.1. Let an algebra B satisfy Conditions (1.7)–(.110) in Remark 1. Then there exist F-linear operators πj:BFij which are F-linear combinations of the operators T0,,Tn for each j{0,1,,n} such that j=0nπj=idB, where idB(x)=x for each xB.  

Proof. From the conditions of this lemma it follows that there exists an inverse operator having matrix p=ξ1 with matrix elements pk,l belonging to F. Then we put πj(x)=k=0npj,kTk(x), consequently, πj(x)=l=0nxlπj(il), where xlF for each l such that x=l=0nxlil, xB. Then πj(il)=k=0npj,kTk(il) hence πj(il)=k=0npj,kξk,lil=δj,lil, where δj,j=1, δj,k=0 for each kj. Thus πj(x)=xjij. 

Corollary 1.1. Let the algebra B satisfy conditions (1.7)–(1.11) in Remark 1.2. Then vj1ijπj(x)=xj for each xB and j=0,,n, where xlF for each l such that x=l=0nxlil.  

Example 1.1. Assume that F is a (commutative associative) field of characteristic charF2, B satisfies conditions (1.7)–(1.10) in Remark 1.2, {i0,i1,,in} is a basis of B over F, det(ξ)0. Then there exists an inverse matrix p=ξ1 with matrix elements pk,l belonging to the field F.

In particular, let us choose B=Am(f(m)) such that 2mN, where F is the field of characteristic char(F)2, f1=1,,fm=1, n=2m1, A0=F with the trivial involution (i. e. a=a¯ for each aA0), i0=1, where 1=1B is the unit element in B (see Remark 1.1). Then x¯=x0i0x1i1xnin for each xB, where x0,,xn denote expansion coefficients belonging to F for x such that x=x0i0+x1i1++xnin. Then T0(x)=x, T1(x)=x0i0x1i1+x2i2++xnin, ..., Tn(x)=x0i0+x1i1++xn1in1xnin, since i0ik=ik, ik2=1, ikil=ilik and (ikil)ik=il for each kl with k1 and l1. Therefore, 122m(T0++T2m1)(x)=x¯, consequently, π0(x)=x0i0=12(T0+122m(T0++T2m1))(x). Then π0(i¯kx)=xki0 for each k1, hence πk(x)=(π0(i¯kx))ik=xkik. Thus ξ is the invertible matrix.

Lemma 1.2. Let An=An(f(n)), A0=A, 2nN, where A is the commutative associative unital algebra with the trivial involution over the commutative associative unital ring F of characteristic char(F)2. Let i0=1A, i2k1=lk for each k=1,,n, ijs=ijs1lks with j1=2k11, js=js1+2ks1 for each s=2,,p, 2pn, 1k1<<kpn, where lp denotes the doubling generator l at the p-th step in Formula (5) in Definition 1. Then {ij:j=0,1,,2n1} is a family of generators of An over A0 satisfying the identities:

ij(iju)=(ijij)u,  (uij)ij=u(ijij),  ij(vij)=(ijv)ij,T(ij(ikv))=0 (1.12)

 for each uAn, v=v¯An and j=0,1,,2n1, 1kj.

Proof. Since the ring F is commutative and associative, then as it is known the left and right F-module structures can be considered as equivalent: (pp1)u=p(p1u)=p1(pu)=(p1p)u for each p, p1 in FuAn, by putting Lp=Rp on A, for each pF, where Lpu=pu, Rpu=up (see [9, Ch. 2]). The algebra A0 is unital, hence A1 is unital, and by induction An is unital according to Formulas (1.4), (1.5) in Definition 1.1. The elements fk in F are cancelable for each k, consequently, the product fk1fkp is nonzero for each 1k1<<kpn, p2, since An is the unital algebra. For each a0, a1 in A0 by the conditions of this lemma a0a1=a1a0 and a0a1¯=a0a1.

Using Formulas (1.4), (1.5) in Definition 1 by induction we deduce that for each x in An there exist elements x0,,x2n1 in A0 such that x=x0i0++x2n1i2n1. That is, {ij:j=0,,2n1} is the family of generators of An over A0. Therefore,

ij(ijx)=m=02n1ij(ijxmim)=m=02n1(ij(ijim))xm  and  (xij)ij=m=02n1xm((imij)ij). (1.13)

 

From Formula (1.5) in Definition 1 we deduce that

lk(lk(ak1+dk1lk))=(lklk)(ak1+dk1lk)   and((ak1+dk1lk)lk)lk=(ak1+dk1lk)(lklk) (1.14)

for each ak1, dk1 in Ak1, where k1. Note that lk2=fk for each k1, since An is the unital algebra. If {lk1,,lkp}q(p) denotes an ordered product, where q(p) is a vector indicating an order of pairwise multiplication with a corresponding order of brackets in lk1,,lkp, where 1kln, klks for each ls, l and s in {1,,n}, 2pn, then there exist unique η(k1,,kp,q(p)){1,2} and j(k1,,kp,q(p)){1,,2n1} such that (1)η{lk1,,lkp}q(p)=ij, where η=η(k1,,kp,q(p)), j=j(k1,,kp,q(p)). Therefore, from (1.14) by induction in k=1,,n it follows that ij(ijim)=(ijij)im and (imij)ij=im(ijij) for each m and j. For each v=v¯An from Formulas (1.5) and (1.6) in Definition 1.1 it follows that T(lkv)=0, lk(vlk)=(lkv)lk=lk(vlk)¯ for each k1 and by induction ij(vij)=(ijv)ij for each j, since i0=1. The latter and (1.13) imply (1.12).

Corollary 1.2. If the conditions of Lemma 1 are satisfied and F is a field, A0=F, then {ij:j=0,,2n1} is a basis in An (as in the F-linear space) 

Definition 1.2. Let F be the commutative associative unital ring. Let B be a unital algebra over F with FCB(B). Let M be a unital left CB(B)-module:

b(b1u)=(bb1)u,  b(u+v)=bu+bv,  (b+b1)u=bu+b1u,  u+(u1+v)=(u+u1)+v (1.15)

for each uu1, v in M, bb1 in CB(B). Let μ1 be a CB(B)-bilinear map μ1:B×MM, that is,

μ1(x,u+v)=μ1(x,u)+μ1(x,v),  μ1(x+y,u)=μ1(x,u)+μ1(y,u),  μ1(bx,u)=bμ1(x,u) (1.16)

such that μ1 is compatible with the left CB(B)-module structure of M:

μ1(x,bu)=bμ1(x,u) (1.17)

for each x, y in B, u, v in M, b in CB(B). Then M will be called a left B-module. Shortly μ1(x,u) can also be denoted by xu. Similarly is defined a right B-module, or a B-bimodule.

For B=An(f(n)) with A0=A, n2, where A is the commutative associative unital algebra with the trivial involution over the associative commutative unital ring F of characteristic char(F)2, if M satisfies conditions (1.15)–(1.17) and

ij(ijx)=(ijij)x (1.18)

for each xM, j=0,,2n1, then M will be called a left An(f(n))-module. Symmetrically is defined the right An(f(n))-module with condition (1.19) instead of (1.18):

(xij)ij=x(ijij) (1.19)

for each xM, j=0,,2n1. If M satisfies (1.15)–(1.19) and (20):

Lb=Rb   on   M   foreach   bCB(B), (1.20)

then it will be called An(f(n))-bimodule and denoted by   BMB or shortly by M, where B=An(f(n)).

If in the B-bimodule M there exists a CB(B)-linear map J:MM such that

J(bx)=(Jx)b¯   foreach   xM   and   bB,  J2=I (1.21)

and   ((xM  bB  bx+J(bx)=0)(x=0)) (1.22)

and   (ijy)ij=ij(yij)   and   ij(iky)+ij(iky)¯=0 (1.23)

for each y=Jy in M and j0, jk1, where B=An(f(n)), I:MM is the identity map I=idM on MIx=x, then M will be called the B-bimodule with the involution J and denoted by BM^B or shortly by M. Briefly Jx will also be denoted by x¯. 

Theorem 1.1. Let M be the unital An(f(n))-bimodule with the involution J, let the subalgebra A0 over F be commutative associative and with the trivial involution a¯=a for each aA0, let also char(F)2 and fj possess an inverse element fj1 in F relative to multiplication for each j=1,,n, where 2nN. Then there exists an A0-subbimodule M0 such that A0MA0=j=02n1ijM0 with JM0=M0, and M0=CM(An(f(n))), and there exists an A0-linear map π^k from M onto ikM0 with π^kπ^j=δk,jπ^k, where δk,k=1, δk,j=0 if kj, for each k and j in {0,1,,2n1}. 

Proof. By virtue of Lemma 1 the Dickson algebra B=An(f(n)) has the family of generators βn:={ij:j=0,,2n1} over A0. By the conditions imposed above in Definition 1 the algebra A0 and the ring F are unital such that there is the natural embedding of F into A0 as F1A0 and hence into B. Therefore, B contains the Dickson subalgebra algFβn over F with generators i0,,i2n1.

Note that FCB(B) and Fikβn=Fβn, Fβnik=Fβn for each k, since FCA0(A0). As in Remark 1 let Tku=(iku)ik for each uB, and T^kx=(ikx)ik for each xM, k=0,,2n1. We put π0(u)=u+u¯2 for each uB, and π^0(x)=x+x¯2 for each xM. Let M0=π^0(M), hence M0={yM:xM,y=x+x¯2}. On the other hand, Rbx=Lbx for each bCB(B) and xM by Definition 1, where Lbu=bu, Rbu=ub for each u, b in B. The algebra A0 is commutative and associative with a0=a¯0 for each a0A0, consequently, A0CB(B) and hence a0y¯=y¯a¯0=ya0=a0y for each yM0 and a0A0. Therefore, M0 is the A0-subbimodule in M, since A0B and M has also the structure of the A0-bimodule A0MA0. It follows that y=y¯ and π^0(y)=y for each yM0, hence π^0π^0=π^0, where as usually (gh)(v)=g(h(v)) denotes the composition of maps g and h with a variable v of h.

For each xM there is the decomposition x=y+z such that y=x+x¯2, z=xx¯2. Let M:={zM:z¯=z}. Evidently, M0M={0} and M is the A0-subbimodule in   A0MA0 such that M0M=  A0MA0, since J:MM and J2=I, also B0B={0}, B0=π0(B), B0=A0, B:={uB:vB,u=vv¯2}.

We put

Sn(f(n)):={fF:p{1,,n}j1{1,,n}jp{1,,n}

α1ZαpZv{1,1}:f=vfj1α1fjpαp},  

consequently, ik2=skS for each k1, where S=Sn(f(n)). Note that if yM0, zM, bB, then (byyb)M0, (by+yb)M, bz+zbM0, bzzbM. On the other hand, (iky=yik)((iky)ik=ysk)(ik(yik)=ysk) for each k1, consequently, from conditions (1.21), (1.22), (1.23) in Definition 1 it follows that iky=yik for each k=0,,2n1, since skSF, i0=1. This implies that ikyM for each k1. By the A0-linearity and Lemma 1.2 this implies that M0ComM(B).

Then we put π^j(x)=sj1(π^0(b¯jx))ij for each xM, j=1,,2n1. Notice that π^k(x)=π^k(y)+π^k(z)=π^k(z) for each k1 and xM, where yM0, zM, x=y+z, y=I+J2x, z=IJ2x, since ikyM and π^0(M)={0}. Thus π^kπ^0=0 for each k1, since π^k(M0)={0} and π^0(M)=M0. From ik2x=ik(ikx)=skx with skS for each k1, char(F)2, FA0CB(B) and the conditions (1.15)–(1.19) in Definition 1.2 it follows that Lik:MM and similarly Rik:MM are A0-linear bijections for each k=0,,2n1, since M is the unital B-bimodule with involution, since the algebra B is unital, i0=1B. Then we deduce that π^k(x)=12sk([I+J](b¯kx))ik=12[sk1(b¯kx)ik+x¯] for each xM and k=1,,2n1. Therefore, π^k:MM for each k1, since z=z¯ for each zM. This implies that π^0π^k(x)=π^0(π^k(z))=0 for each xM and k1, since M0M={0}, where z=IJ2x. Then we infer that π^kπ^k(x)=π^k(x¯)=π^k(x) for each xM and k1, since π^k(x)=π^k(z) with z=IJ2x, since LikRikπ^0=Lik2π^0, since π^0(M)=M0. Particularly π^k(iky)=iky for each k1 and yM0, since iky=yik. This implies that π^k(M)=π^kπ^k(M)=π^k(ikM0)=ikM0, ikM0=M0ik for each k0, since i0=1B.Note that ikM0M and π^0(b¯kx)=π^0(b¯kz) with z=IJ2x for each k1 and xM. Thus π^0|M0=idM0, π^0|M=0, where idM0(y)=y for each yM0.Therefore, π^jπ^k=0 for each jk, since ijM0ikM0={0}, since ij(iky)+ij(iky)¯=0 for each y=Jy in M and j0, jk1, since fj is invertible relative to multiplication in F for each j.

Then we put K^=j=02n1π^j on M, and K=j=02n1πj on B. These operators are idempotent K^2=K^ and K2=K, since π^jπ^k=δj,kπ^j and πjπk=δj,kπj for each j,k=0,,2n1. Hence IK^ also is the idempotent operator.

It is known that the minimal subalgebra A(j,k) in An(f(n)) generated by {A0,ij,ik} is associative for each j,k=0,,2n1, since F and A0 are commutative and associative by the conditions of this theorem (see [1, 4, 9]). Therefore, M(j,k):=M0ijM0ikM0(ijik)M0 is the A(j,k)-subbimodule with involution in M, since ikM0=M0ik for each kijM0ikM0={0} for each jk, ijikG, where G=Gn(f(n))={i0,,i2n1}S, FA0.

On the other hand, K^y=π^0y=y and K^(ijy)=π^j(ijy)=ijy for each yM0 and j1, since π^k(ijy)=π^kπ^j(ijy)=0 for each jk. Then we deduce that K^M=j=12n1ijM0, since Lij:M0M and π^jM=ijM0 for each j1, since (π^jM)ij=M0, M0ij=ijM0. Hence π^k(ikP)=π^0(P)={0}, where P:=M(j=02n1ijM0). Notice that P is the proper An(f(n))-subbimodule with involution in M, that is P satisfies conditions (1.18)–(1.23) in Definition 1.2. On the other side, the condition

((xMbBbx+J(bx)=0)(x=0))   isequivalentto

((xMj{0,,2n1}ijx+J(ijx)=0)(x=0)),  

since for each bB there exist a0,,a2n1 in A0 such that b=a0i0++a2n1i2n1 by Lemma 1.2. From π^0(P)={0} and P0=π^0(P) it follows that P0={0}, consequently, P={0}, since P0=ijπ^j(P)={0} for each j1. Thus P={0}, consequently, K^=I on M and hence   A0MA0=j=02n1ijM0 and consequently, M0=ComM(B), where M is considered as the A0-bimodule   A0MA0, since MComM(B)={0}. Analogously   A0BA0=j=02n1ijB0 and B0=ComB(B), B0=π0(B), where B is considered as the A0-bimodule   A0BA0.

Therefore, for each yM0 and for each jk such that j1 and k1 we infer that π^t((ijy)ik)=0 and π^t(ij(yik))=0 for each tr,F π^r((ijy)ik)=(ijy)ik and π^r(ij(yik))=ij(yik), where r{1,,2n1} is such that ijikirS, since (ijy)ikM(j,k), ij(yik)M(j,k). We put v=ij(yik)(ijy)ik. Therefore, vLirM0M(j,k).From Formulas (1.21), (1.22) and (1.23) in Definition 1.2 we deduce that v=v¯. Thus vM0M={0}, that is v=0. Hence (ijy)ik=ij(yik) for each jk such that j1 and k1. For j=0 or k=0 evidently ij(yik)=(ijy)ik, since i0=1B. Using M0=ComM(B) and Conditions (1.21), (1.22), (1.23) in Definition 1.2 we infer that ij(yik)=(yik)ij for each yM0 and jk such that j1, k1. Then it is similarly deduced that ij(iky)=(ijik)y and (yik)ij=y(ikij) for each jk in {1,,2n1}, yM0, since v+v1=0 and v¯=v1 with v=ij(iky)(ijik)y, v1=(yik)ijy(ikij), since vM, v1M, M0M={0}, since ij, ik, ijik belong to B. If j=0 or k=0, evidently ij(iky)=(ijik)y and (yik)ij=y(ikij) for each yM0. By the A0-linearity and Lemma 1.2 we infer that M0NM(B), consequently, CM(B)=M0.

Corollary 1.3. Let the conditions of Theorem 1.1 be satisfied and n=3. Then b(bx)=(bb)x, (bx)b=b(xb), (xb)b=x(bb) for each xM and  bB.

Proposition 1.1. If the conditions of Theorem 1.1 are satisfied and there is some equality with a finite sum like

θSm;k1,,km;lγθ;k1,,km;l{dθ(k1)dθ(km)}ql,θ(m)=0                                                

in An(f(n)), where dkjAn(f(n)), γθ;k1,,km;lA0 for each kj, j, l, θ, then there exists a corresponding identity in M.

Proof. For the identity satisfying the conditions of this proposition we use the decomposition   A0MA0=j=02n1ijM0 and JM0=M0, where M0=CM(B). Then we substitute one of dkj on dkjy with an arbitrary fixed nonzero yM0 for each additive {dθ(k1)dθ(km)}ql,θ(m), where Sm denotes the symmetric group of {1,,m}, θ:{1,,m}{1,,m} is a bijection for each θSm, ql,θ(m) is a vector indicating an order of pairwise multiplications in {}. Then it is possible to make sums of such type equalities with multipliers from A0. 

This proposition shows that definitions above are natural, because particularly the algebra has also the structure of the module over itself. There may other equivalent definitions be given.

Theorem 1.2. Assume that F is a commutative associative unital ring, char(F)2, a unital algebra A0 over F is associative and commutative with the trivial involution a¯=a for each aA0, M0 is a unital A0-bimodule, B=An(f(n)) is the generalized Dickson algebra, and fj possess an inverse element fj1 in F relative to multiplication for each j=1,,n,   A0MA0=j=02n1ijM0 such that M0=CM(B), where n2. Then   A0MA0 can be supplied with B-bimodule with involution   BM^B structure.

Proof. We put by=yb, a(by)=(ab)y, a(yb)=(ay)b, (ya)b=y(ab), J(by)=b¯y for each yM0, a and b in BJ(x+z)=Jx+Jz for each x and z in M=j=02n1ijM0, since M0=CM(B) and i0y=y for each yM0. Therefore, Jx=x0b¯0++x2n1b¯2n1 for each x=x0i0++x2n1i2n1 in M with x0,,x2n1 in M0, consequently, J2=I and hence J is the involution on M. In view of Lemma 1.2 the equalities by=yb, a(by)=(ab)y, a(yb)=(ay)b, (ya)b=y(ab) for each yM0, a and b in , supply M with properties (1.15)–(1.23) in Definition 1.2, since the minimal subalgebra A(j,k,l) in An(f(n)) generated by {A0,ij,ik,il} is alternative for each j,k,l in {0,,2n1} (see [1, 4, 9]), since F and A0 are unital, associative and commutative, a¯=a for each aA0, since each xM has the decomposition x=x0i0+,,+x2n1i2n1 in M with x0,,x2n1 in M0. 

Definition 1.3. If M is the left B-module (see Definition 1.2), E is a subset in B, D is a subset in B (or in M), then

ED={ed:eE,dD},

ED={x=k=1mekdk:mN,kekE,dkD}

denote subsets in B (or in M correspondingly). Then it is put

E(1)=E,  (ED)(1)=ED;

n>1  dE(n)=EEn1,  (ED)(n)=E(ED)(n1);

E<1>=E,  (ED)<1>=ED,

n>1  E<n>=EEn1,  (ED)<n>=E(ED)<n1>;

E()=n=1E(n),  d(ED)()=n=1(ED)(n);

E<>=n=1E<n>,(ED)<>=n=1(ED)<n>.

If N is a left B-submodule in M such that dM, D={d}, E=B, N=(B{d})<>, then N is called a cyclic left B-submodule in M generated by d.

Similar notations are for right B-modules or B-bimodules.

If M is the B-bimodule, then

(ED)(1,1)=(ED)(DE),  (ED)<1,1>=(ED)+(DE),

n>1  (ED)(n,n)=(E(ED)(n1,n1))((ED)(n1,n1)E),

(ED)<n,n>=(E(ED)<n1,n1>)+((ED)<n1,n1>E);

(ED)(,)=n=1(ED)(n,n),  (ED)<,>=n=1(ED)<n,n>.

If N is a B-subbimodule in M such that dM, D={d}, E=B, N=(B{d})<,>, then N is called a cyclic B-subbimodule in M generated by d.

If F is the field and V is an An(f(n))-subbimodule with the involution in an An(f(n))-bimodule with the involution, then dimFV denotes the dimension of V over F.

Theorem 1.3. Let the conditions of Theorem 1.1 be satisfied, DM. Then (BD)<m,m>(BD)<m+1,m+1> for each m1, (BD)<k,k>=(BD)<4,4> for each k4. Moreover, (BD)<4,4> is the B-subbimodule with involution in M and (BD)<4,4>=(BD)<,>, (BD)<,>=(BD¯)<,>. 

Proof. The algebra B=An(f(n)) is unital, the B-bimodule with involution M is unital, n2, by the imposed conditions. Therefore, (BD)<m,m>(BD)<m+1,m+1> for each m1.

For each xD the element π^j(x) belongs to (B(B{x}))B for each j=0,,2n1, since

x¯=122n(x+(b¯1x)i1s1++(b¯2n1x)i2n1s2n1)

by Theorem 1.1, where sj is invertible in F (relative to multiplication) for each j1. Evidently, (B(B{x}))B(BD)<3,3> for each xD. On the other hand, Rikπ^j(x) belong to (BD)<4,4> for each j and k in {0,,2n1}, xD, since by Theorem 1.1 π^j(x)ijM0, each x in M has the decomposition x=x0i0++x2n1i2n1 with x0,,x2n1 in M0, π^j(x)=xjij, M0=CM(B). This implies that (BD)<4,4>=k=02n1ikV0 with V0=spanF{xj:xDj{0,,2n1}xj=ijsjπ^j(x)}, where spanFQ denotes the F-linear span of a subset Q in M. Certainly, V0M0 and consequently, (BD)<4,4> is the B-subbimodule with involution in M and (BD)<4,4>=(BD)<,>, (BD)<,>=(BD¯)<,>.

Corollary 1.4. If the conditions of Theorem 1.3 are satisfied and F is the field, then dimF(BD)<,>=2ndimFV0 and dimFV02ncard(D). 

Corollary 1.5. Let F be a commutative associative unital ring, char(F)2, let A, be a commutative associative unital algebra over F with trivial involution a=a¯ for each aA0, 2nN, fj be invertible in F relative to multiplication for each j=1,,n+1. Let also N be an An(f(n))-bimodule with involution and N be contained in some An+1(f(n+1))-bimodule P such that CN(An(f(n)))=CN(An+1(f(n+1))), then M=N(Nln+1) is an An+1(f(n+1))-bimodule with involution and M0=N0. 

Proof. By virtue of Theorem 1.1 N has the decomposition N=k=02n1N0ik with N0=CN(An(f(n))), hence M=j=02n+11N0ij.

From Theorem 1.2 it follows that M is the An+1(f(n+1))-bimodule with involution and M0=N0, since CN(An(f(n)))=CN(An+1(f(n+1))). 

Remark 1.3. For the generalized Dickson algebra B=An(f(n)) with n2, there is its unvolutorial algebra B¯, which as an F-linear space, is the same, but has the multiplication obtained from B by the following formula: a¯b¯=c¯ with c¯=ba induced from B by the involution operator Jb=b¯ for each a¯, b¯ in B¯, an addition in B¯ is induced by that of in B.

Therefore, the left B¯-module   B¯M also has the structure of the right B-module MB such that a¯(b¯x)=(xb)a, where denotes the multiplication of x in M on b¯, a¯ in B¯. Using the tensor product over F and the involutorial algebra B¯ instead of the opposite algebra Bop one gets the involutorial enveloping algebra Be=BFB¯ instead of the enveloping algebra Be=BFBop. Then the left Be-module   BeM also has the structure of B-bimodule   BMB, but generally it may not have the structure of the B-bimodule with involution   BM^B.  

Proposition 1.2. Let B=An(f(n)), n2, where A0 is the commutative associative unital algebra with trivial involution a¯=a for each aA0 over the commutative associative unital ring F, char(F)2, fj is invertible in F relative to multiplication for each j=1,,n. Then there exist B-bimodules which are not B-bimodules with involution.

Proof. Take An+p(f(n+p)) with n2 and p1, with fj invertible in F for each j=n+1,,n+p. Then M=An+p(f(n+p)) has the structure of the B-bimodule   BMB, but it is not the B-bimodule with involution by Theorems 1 and 1. That is, this M does not satisfy conditions (21), (22), (23) in Definition 1.

Theorem 1.4. Let   BN the left B-module with B=An(f(n)), n2, where A0 is the commutative associative unital algebra with trivial involution a¯=a for each aA0 over the commutative associative unital ring F, char(F)2, fj is invertible in F relative to multiplication for each j=1,,n. Let DN, NM, where M has the structure of the B-bimodule with involution   BM^B. Then (BD)<m>=(BD)<1> for each 1<m and (BD)<1> is the left B-submodule in   BN. 

Proof. In view of Lemma 1.2 (BD)<1> is the A0-linear span spanA0Q of the family Q={ijx:xD,j{0,,2n1}}. By virtue of Theorem 1.1 each element x in M has the decomposition x=x0i0++x2n1i2n1 with x0,,x2n1 belonging to M0, that is x=β[x], where β=βn=(i0,,i2n1), [x]t=(x0,,x2n1),Ut denotes a transposed matrix of a matrix U. Consequently, ijx=x0(iji0)+,,+x2n1(iji2n1) for each j{0,,2n1}, since M0=CM(B).

On the other hand, {ij1ijm}q(m)G for each j1,,jm in {0,,2n1}, 2mN, where G=Gn(f(n)), where q(m) is a vector indicating an order of pairwise multiplications in {}. Note that sijG=G for each j{0,,2n1} and sS, where S=Sn(f(n)).

Notice also that SFA0. On the other side, A0(A0{x})=A0{x} and A0(A0{b})=A0{b} for each xM, bB. For each j, k, l in {0,,2n1} the minimal subalgebra A(j,k,l) in B generated by {A0,ij,ik,il} is alternative (see [1, 4, 9]). Therefore, ij(ikil)+ik(ijil)=0 for each jk with j1 and k1, l in {0,,2n1},since (ij+ik)((ij+ik)il)=((ij+ik)(ij+ik))il, ijik+ikij=0, ij(ijil)=(ijij)il. Then ikβ=Ukβ with 2n×2n matrix Uk with entries in S for each k. From this and Conditions (1.1)–(1.4) in Definition 1.2, and x=β[x] for each x  BM^B, it follows that spanA0Q=(BD)<1> and spanA0Q=spanA0(GD), spanA0(GD)=spanA0(GspanA0(GD)), since D  BM^B, SA0. It implies that (BD)<2>=(BD)<1>. By induction this gives (BD)<m+1>=(BD)<m> for each 2mN, hence (BD)<>=(BD)<1>.

Certainly (BD)<> is the left B-submodule in BN, consequently, (BD)<1> is the left B-submodule in BN.

Corollary 1.6. Let the conditions of Theorem 1.4 be satisfied. Then (BD)<>¯=(D¯B)<>. 

Proposition 1.3. Let the conditions of Theorem 1.1 be satisfied with A0=F, where F is a field, char(F)2. Let either M0=Fm and mN, or M0 be a F-linear space such that M0Fy be isomorphic with M0 for each yM0. Then for each xM there exist an invertible F-linear operator V:MM and bB and yM0 such that Vx=by. 

Proof. If x=0 the assertion of this theorem is evident. For x0 in M there is the decomposition x=x0i0+,,+x2n1i2n1 with x0,,x2n1 in M0 such that there exists k{0,,2n1} with xk0. So it is possible to choose such marked k. If M0=Fm, then it has a basis e1,,em as the F-linear space. Therefore, for each 0xjM0 there exists an invertible F-linear operator Vxj on M0 such that Vxjxj=xk. If M0 is the F-linear space such that M0Fy is isomorphic with M0 for each yM0, then for each 0xjM0 there exists an invertible F-linear operator Vxj on M0 such that Vxjxj=xk. We put V=j=02n1V^xj, where Vxl=idM0 if xl=0 or if l=k, where V^xj:M0ijM0ij, V^xj(yij)=(Vxj(y))ij=ij(Vxj(y)) for each yM0. In view of Theorem 1 M0=CM(B), hence it is naturally V(bI)=(bI)V for each b in F, where I=idM. Therefore, V is the left and right F-linear operator on M such that V is invertible on M since CB(B)=F in the considered case A0=F with n2. This implies that Vx=by with y=xk and b=jΛxij, where Λx={j{0,,2n1}:xj0}. 

Corollary 1.7. Let B be the division alternative algebra, let M be a B-bimodule with involution satisfying the conditions of Theorem 1.1, x=by with yM0,bB. Then

(B{x})<>=({x}B)<>=(B{x})<,>.

1.1. Conclusion

The results of this paper can be used for further studies of a structure of modules over nonassociative algebras, operator theory in modules over Dickson algebras, their applications to PDEs, mathematical physics, quantum field theory, their applications in other sciences, etc.

This can be used for analysis and solution of PDEs utilized in gas dynamics and high energy density physics, hydrodynamics, particularly, describing tidal deformations and the gravitational potential of the planet [17, 19–21].

It is worth to mention, that spectral theory of operators over Dickson algebras and particularly Cayley algebras was studied in [15–17]. Therefore, using the results obtained in this article, it will be important to investigate further operator theory in modules over generalized Dickson algebras, theory of factors for nonassociative analogs of -algebras, analogs of direct integrals for them, applications in coding theory [22], etc.

2. Appendix

Definiton 2.1. Let X be an algebra over a ring F, let M be a X-bimodule and BX. We put

ComM(B):={xM:bB,xb=bx};

NM,l(B):={xM:bB,cB,(xb)c=x(bc)};

NM,m(B):={xM:bB,cB,(bx)c=b(xc)};

NM,r(B):={xM:bB,cB,(bc)x=b(cx)};

NM(B):=NM,l(B)NM,m(B)NM,r(B)  and  

CM(B):=ComM(B)NM(B).

Then ComM(B), NM(B), and CM(B) are called a commutant, a nucleus and a centralizer correspondingly of the X-bimodule M relative to a subset B in X. Instead of ComM(X), NM(X), or CM(X) it will be also written shortly ComM, NM, or CM correspondingly.

A left (or right) X-module M is also denoted by   XM (or MX correspondingly), similarly for bimodules.

Example 2.1. Particularly over the real field F=A0=R for Ar(f(r)), 2r, up to normalization of the doubling generator lk on k-th step, a scalar fk{1,1} can be chosen for each k=1,2, (see Definition 1.1 and Remark 1.1). Frequently a¯ is also denoted by a* or a~. 

Definition 2.2. Let N and M be two left B-modules (see Definition 1.2). A map T:NM we call a left B-quasi-linear operator, if it is additive:

T(v+w)=T(v)+T(w)

and left CB(B)-homogeneous:

T(av)=aT(v)

for each aCB(B), v and wN.

Evidently, each left B-quasi-linear operator is left CB(B)-linear. Similarly right B-quasi-linear operators for right B-modules are defined. If N and M are B-bimodules and a map T:NM is left and right B-quasi-linear, then T will be called a B-quasi-linear operator.

If for left B-modules N and M the operator T is additive and

T(bv)=bT(v)

for each bB, v in N, then it will be called left B-linear. Analogously right B-linear operators for right B-modules are defined. If N and M are B-bimodules and a map T:NM is left and right B-linear, then T will be called a B-linear operator.

The operator left or right B-quasi-linear (or left or right B-linear) T:MM is called invertible if there exists a left or right B-quasi-linear (or left or right B-linear correspondingly) operator V:MM such that TV=I and VT=I, where I=idM, where idM(x)=x for each xM. Then V is called an inverse operator of T and also denoted by T1. 

×

About the authors

Sergey V. Ludkovsky

MIREA – Russian Technological University

Author for correspondence.
Email: sludkowski@mail.ru
ORCID iD: 0000-0002-4733-8151

Doctor of Physical and Mathematical Sciences, Professor of Applied Mathematics Department

Russian Federation, 78 Vernadsky Av., Moscow 119454

References

  1. L. E. Dickson, The Collected Mathematical Papers, Cambridge Library Collection - Mathematics, 1–5, Chelsea Publishing Co., New York, 1975.
  2. K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, A. I. Shirshov, Rings that are Nearly Associative, Academic Press, New York, 1982.
  3. R. B. Brown, “On generalized Cayley-Dickson algebras”, Pacific Journal of Mathematics, 20:3 (1967), 415–422.
  4. J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145-205.
  5. R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966.
  6. S. V. Ludkowski, “Completions and homomorphisms of infinite dimensional Cayley-Dickson algebras”, Linear Multilinear Algebra, 69:11 (2021), 2040–2049.
  7. D. Allcock, “Reflection groups and octave hyperbolic plane”, J. Algebra, 213:2 (1998), 467-498.
  8. A. Belov, L. Bokut, L. Rowen, J.-T. Yu, “The Jacobian conjecture, together with Specht and Burnside-type problems”, Automorphisms and birational affine geometry, Springer Proceedings in Mathematics and Statistics, 79, ed. I. Cheltsov, 2014, 249–285.
  9. N. Bourbaki, Algebra, Springer, Berlin, 2022.
  10. N. Jacobson, “Cayley numbers and normal simple Lie algebras of type G”, Duke Math. J., 5 (1939), 775–783.
  11. M. Goto, F.D. Grosshans, Semisimple Lie Algebras, Marcel Dekker, Inc., New York, 1978.
  12. P. Eakin, A. Sathaye, “On automoprhisms and derivations of Cayley-Dickson algebras”, J. Algebra, 129:2 (1990), 263–278.
  13. H. B. Lawson, M.-L. Michelson, Spin Geometry, Princ. Univ. Press, Princeton, 1989.
  14. C. Culbert, “Cayley-Dickson algebras and loops”, J. Gener. Lie Theory Appl., 1:1 (2007), 1-17.
  15. S. V. Ludkovsky, “C*-algebras of meta-invariant operators in modules over Cayley-Dickson algebras”, Southeast Asian Bull. Math., 39:5 (2015), 625–684.
  16. S. V. Ludkovsky, W. Sprossig, “Spectral representations of operators in Hilbert spaces over quaternions and octonions”, Complex Var. Elliptic Equ., 57:12 (2012), 1301–1324.
  17. S. V. Ludkovsky, W. Sprossig, “Spectral theory of super-differential operators of quaternion and octonion variables”, Adv. Appl. Clifford Algebr., 21:1 (2011), 165–191.
  18. F. Gursey, C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996.
  19. A. V. Shatina, A. S. Borets, “A mathematical model of the gravitational potential of the planet taking into account tidal deformations”, Russian Technol J., 12:2 (2024), 77–89.
  20. S. V. Ludkovsky, “Integration of vector Sobolev type PDE over octonions”, Complex Var. Elliptic Equ., 61:7 (2016), 1014–1035.
  21. S. V. Ludkovsky, “Integration of vector hydrodynamical partial differential equations over octonions”, Complex Var. Elliptic Equ., 58:5 (2013), 579–609.
  22. V. N. Markov, A. V. Mikhalev, A. A. Nechaev, “Nonassociative algebraic structures in cryptography and coding”, J. Math. Sci. (N.Y.), 245:2 (2020), 178–196.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».