GREEN FUNCTION OF THE ZAREMBA PROBLEM FOR THE HEAT OPERATOR
- Authors: Chechkina A.G1,2
-
Affiliations:
- Lomonosov Moscow State University
- Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences
- Issue: Vol 526, No 1 (2025)
- Pages: 40–45
- Section: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/364248
- DOI: https://doi.org/10.7868/S3034504925060077
- ID: 364248
Cite item
Abstract
A parabolic initial-boundary value problem with homogeneous Zaremba boundary conditions in a cylinder whose base is a strictly Lipschitz bounded domain is considered, for which a theorem of the existence and uniqueness of the Green’s function is proved.
Keywords
About the authors
A. G Chechkina
Lomonosov Moscow State University; Institute of Mathematics with Computing Center, Ufa Federal Research Centre, Russian Academy of Sciences
Email: chechkina@gmail.com
Moscow, Russia; Ufa, Russia
References
- Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.
- Мазья В.Г. Пространства С.Л. Соболева. Л.: Изд.-во Ленинградского гос. ун.-та, 1985.
- Alkhutov Yu.A., Zhikov V.V. Existence Theorems for Solutions of Parabolic Equations with Variable Order of Nonlinearity // Proceedings of the Steklov Institute of Mathematics. 2010. V. 270. P. 15–26.
Supplementary files


