ORLICZ TYPE SPACES RELATED WITH NONLINEAR NONLOCAL FUNCTIONALS
- Authors: Borisov D.I1,2,3, Piatnitskii A.L4,5
-
Affiliations:
- Institute of Mathematics, Ufa Federal Research Center, RAS
- Peoples Friendship University of Russia (RUDN University)
- Bashkir State Pedagogical University named after M. Akhmulla
- The Arctic University of Norway, campus Narvik
- Higher School of Modern Mathematics MIPT
- Issue: Vol 526, No 1 (2025)
- Pages: 8-15
- Section: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/364243
- DOI: https://doi.org/10.7868/S3034504925060023
- ID: 364243
Cite item
Abstract
In the work we introduce the Orlicz spaces on the base of nonlinear nonlocal functionals. We study the main properties of such spaces. We prove that these spaces are Banach, separable and the set of compactly supported infinitely differentiable functions is dense in these spaces. We describe the structure of dual spaces and obtain the representations for the linear functionals.
About the authors
D. I Borisov
Institute of Mathematics, Ufa Federal Research Center, RAS; Peoples Friendship University of Russia (RUDN University); Bashkir State Pedagogical University named after M. Akhmulla
Email: borisovdi@yandex.ru
Ufa, Russia; Moscow, Russia; Ufa, Russia
A. L Piatnitskii
The Arctic University of Norway, campus Narvik; Higher School of Modern Mathematics MIPT
Email: apiatnitski@gmail.com
Narvik, Norway; Moscow, Russia
References
- Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. М., Физматгиз. (1958).
- Alicandro R., Ansini N., Braides A., Piatnitski A., Tribuzio A. A Variational Theory of Convolution-Type Functionals. Springer, Singapore Pte Ltd. (2023).
- Diening L., Harjulehto P., Hа¨sto¨ P., Rouzˇicˇka M. Lebesgue and Sobolev Spaces with Variable Exponents. Heidelberg: Springer. (2011).
- Diening L. Maximal function on generalized Lebesgue spaces Lp() // Math. Inequal. Appl. 7:2, 245–253 (2004).
- Edmunds D., Rakosnik J. Density of smooth functions in Wk,p(x)(Ω) // Proc. R. Soc. Lond., Ser. A. 437:1899, 229–236 (1992).
- Fan X.-L. and Zhao D.Onthe spaces Lp(x)(Ω) and Wm,p(x)(Ω) // J. Math. Anal. Appl. 263:2, 424–446 (2001).
- Harjulehto P., Hа¨sto¨ P., Leˆ U´.V., Nuortio M. Overview of differential equations with non–standard growth // Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72:12, 4551–4574 (2010).
- Harjulehto P., Hа¨sto¨ P. Orlicz Spaces and Generalized Orlicz Spaces. Cham: Springer. (2019).
- Kondratiev Yu., Kutoviy O., Pirogov S. Correlation functions and invariant measures in continuous contact model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11:2, 231–258 (2008).
- Rao M.M., Ren Z.D. Theory of Orlicz Spaces. New York: Marcel Dekker. (1991).
- Kova´cik O. and Ra´kosnik J. On spaces Lp(x) and W1,p(x) // Czechoslovak Math. J. 41:116, 592–618 (1991).
- Ruzicka M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag. (2000).
- Samko S. Denseness of C∞ 0 (RN) in the generalized Sobolev spaces WM,P(X)(RN) // In “Direct and Inverse Problems of Mathematical Physics”, Proc. ISAAC’97 Congress, Kluwer Acad. Publ., Dordrecht, 333–342 (2000).
- Zhikov V.V. Density of smooth functions in Sobolev-Orlicz Spaces // J. Math. Sci., New York. 132:3, 285–294 (2006).
- Zhikov V.V. On Lavrentiev’s phenomenon // Russ. J. Math. Phys. 3:2, 249–269 (1995).
Supplementary files


