ORLICZ TYPE SPACES RELATED WITH NONLINEAR NONLOCAL FUNCTIONALS
- Authors: Borisov D.I1,2,3, Piatnitskii A.L4,5
-
Affiliations:
- Institute of Mathematics, Ufa Federal Research Center, RAS
- Peoples Friendship University of Russia (RUDN University)
- Bashkir State Pedagogical University named after M. Akhmulla
- The Arctic University of Norway, campus Narvik
- Higher School of Modern Mathematics MIPT
- Issue: Vol 526, No 1 (2025)
- Pages: 8-15
- Section: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/364243
- DOI: https://doi.org/10.7868/S3034504925060023
- ID: 364243
Cite item
Abstract
About the authors
D. I Borisov
Institute of Mathematics, Ufa Federal Research Center, RAS; Peoples Friendship University of Russia (RUDN University); Bashkir State Pedagogical University named after M. Akhmulla
Email: borisovdi@yandex.ru
Ufa, Russia; Moscow, Russia; Ufa, Russia
A. L Piatnitskii
The Arctic University of Norway, campus Narvik; Higher School of Modern Mathematics MIPT
Email: apiatnitski@gmail.com
Narvik, Norway; Moscow, Russia
References
- Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. М., Физматгиз. (1958).
- Alicandro R., Ansini N., Braides A., Piatnitski A., Tribuzio A. A Variational Theory of Convolution-Type Functionals. Springer, Singapore Pte Ltd. (2023).
- Diening L., Harjulehto P., Hа¨sto¨ P., Rouzˇicˇka M. Lebesgue and Sobolev Spaces with Variable Exponents. Heidelberg: Springer. (2011).
- Diening L. Maximal function on generalized Lebesgue spaces Lp() // Math. Inequal. Appl. 7:2, 245–253 (2004).
- Edmunds D., Rakosnik J. Density of smooth functions in Wk,p(x)(Ω) // Proc. R. Soc. Lond., Ser. A. 437:1899, 229–236 (1992).
- Fan X.-L. and Zhao D.Onthe spaces Lp(x)(Ω) and Wm,p(x)(Ω) // J. Math. Anal. Appl. 263:2, 424–446 (2001).
- Harjulehto P., Hа¨sto¨ P., Leˆ U´.V., Nuortio M. Overview of differential equations with non–standard growth // Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72:12, 4551–4574 (2010).
- Harjulehto P., Hа¨sto¨ P. Orlicz Spaces and Generalized Orlicz Spaces. Cham: Springer. (2019).
- Kondratiev Yu., Kutoviy O., Pirogov S. Correlation functions and invariant measures in continuous contact model // Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11:2, 231–258 (2008).
- Rao M.M., Ren Z.D. Theory of Orlicz Spaces. New York: Marcel Dekker. (1991).
- Kova´cik O. and Ra´kosnik J. On spaces Lp(x) and W1,p(x) // Czechoslovak Math. J. 41:116, 592–618 (1991).
- Ruzicka M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag. (2000).
- Samko S. Denseness of C∞ 0 (RN) in the generalized Sobolev spaces WM,P(X)(RN) // In “Direct and Inverse Problems of Mathematical Physics”, Proc. ISAAC’97 Congress, Kluwer Acad. Publ., Dordrecht, 333–342 (2000).
- Zhikov V.V. Density of smooth functions in Sobolev-Orlicz Spaces // J. Math. Sci., New York. 132:3, 285–294 (2006).
- Zhikov V.V. On Lavrentiev’s phenomenon // Russ. J. Math. Phys. 3:2, 249–269 (1995).
Supplementary files


