ON NUMERICAL BEAMFORMING FOR ACOUSTIC SOURCE IDENTIFICATION BASING ON SUPERCOMPUTER SIMULATION DATA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to the method of numerical beamforming for processing spatio-temporal data obtained from supercomputer simulation of aeroacoustics problems, in order to localize a distributed acoustic source formed by interaction of turbulent flow and an aircraft or its elements in flight mode, and to determine its amplitude-frequency characteristics. Mathematically, the proposed method is based on solving the inverse problem of restoring the right-hand side in the Helmholtz equation for sources of monopole and dipole types. Compared to an analogue intended for the analysis of experimental measurements, the new method has significant advantages and allows generalization to the case of correlated sources. In the paper, the capabilities of the method are demonstrated by solving the problem of identifying an acoustic source that is generated by an upswept aircraft wing with deployed high-lift devices in landing mode.

About the authors

G. M. Plaksin

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Email: gplaxin@mail.ru
Moscow, Russia

T. K. Kozubskaya

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Email: kozubskaya@imamod.ru
Moscow, Russia

I. L. Sofronov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: sofronov.il@mipt.ru
Moscow, Russia; Dolgoprudny, Russia

References

  1. Sijtsma P. Acoustic beamforming for the ranking of aircraft noise // Accurate and efficient aeroacoustic prediction approaches for airframe noise, VKI Lecture Series 2013-03, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genese, BE, edited by C. Schram, R. D𝑒nos, and E. Lecomte, 2013.
  2. Зайцев М. Ю., Копьев В. Ф., Величко С. А., Беляев И.В. Локализация и ранжирование источников шума самолета в летных испытаниях и сравнение с акустическими измерениями крупномасштабной модели крыла // Акустический журнал. 2023. Т. 69. № 2. С. 165–176. https://doi.org/10.31857/S0320791922600561
  3. Sanders M., Santana L., Venner C. The Sweep Angle Effect on Slat Noise Characteristics of the 30P30N High-Lift Model in an Open-Jet Wind Tunnel // AIAA 2020-2557. AIAA AVIATION 2020 FORUM. June 2020. https://doi.org/10.2514/6.2020-2557
  4. Kozubskaya T. K., Plaksin G. M., Sofronov I. L. Statement of the beamforming problem and a method of its solution for the localization of an acoustic source based on computational experiment data // Comput. Math. Math. Phys. 2021. V. 61. № 11. P. 1864–1885. https://doi.org/10.1134/S0965542521110129
  5. Karakulev A., Kozubskaya T., Plaksin G., Sofronov I. Ffowcs Williams–Hawkings analogy for near-field acoustic sources analysis // Int. J. Aeroacoustics. 2022. V. 21. P. 457–475. https://doi.org/10.1177/1475472X221107367
  6. Kozubskaya T. K., Plaksin G. M., Sofronov I. L. On Numerical Beamforming for Correlated DipoleType Sources, Comput. Math. Math. Phys. 2023. V. 63. № 11. P. 2162–2175. https://doi.org/10.1134/S0965542523110131
  7. Горобец А. В., Дубень А. П., Козубская Т. К., Родионов П. В. Подходы к численному моделированию акустического поля, создаваемого крылом самолета с механизацией на режиме посадки // Матем. моделирование. 2022. Т. 34. № 7. С. 24–48. https://doi.org/10.20948/mm-2022-07-02
  8. Choudhari M., Lockard D. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop // AIAA 2015-2844, 2015. https://doi.org/10.2514/6.2015-2844
  9. Shur M. L., Spalart P. R., Strelets M. K., Travin A. K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities // Int. J. Heat Fluid Flow. 2008. V. 29. № 6. P. 1638–1649. https://doi.org/10.1016/J.IJHEATFLUIDFLOW. 2008.07.001
  10. Abalakin I., Bakhvalov P., Kozubskaya T. Edgebased reconstruction schemes for unstructured tetrahedral meshes // Int. J. Numer. Methods Fluids. 2016. V. 81. № 6. P. 331–356. https://doi.org/10.1002/fld.4187
  11. Ffowcs Williams J. E., Hawkings D. L. Sound generation by turbulence and surfaces in arbitrary motion // Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 1969. V. 264. № 1151. P. 321–342. https://doi.org/10.1098/rsta.1969.0031
  12. Pascioni K. A., Cattafesta L. N. An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities // J. Sound Vib. 2018. V. 429. P. 224–244. https://doi.org/10.1016/J.JSV.2018.05.029
  13. Liu Y., Quayle A. R., Dowling A. P., Sijtsma P. Beamforming correction for dipole measurement using two-dimensional microphone arrays // J. Acoust. Soc. Am. 2008. V. 124. № 1. P. 182–191. http://dx.doi.org/10.1121/1.2931950
  14. Housman J., Stich G.-D., Kocheemoolayil J., Kiris C. Predictions of Slat Noise from the 30P30N at High Angles of Attack using Zonal Hybrid RANS-LES // AIAA 2019-2438. 25th AIAA/CEAS Aeroacoustics Conference. May 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».