Upwind bicompact schemes for hyperbolic conservation laws
- 作者: Bragin M.D.1
-
隶属关系:
- Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
- 期: 卷 517, 编号 1 (2024)
- 页面: 50-56
- 栏目: MATHEMATICS
- URL: https://journals.rcsi.science/2686-9543/article/view/265406
- DOI: https://doi.org/10.31857/S2686954324030097
- EDN: https://elibrary.ru/YBALJW
- ID: 265406
如何引用文章
详细
For the first time, upwind bicompact schemes of third order approximation in space are presented. A formula is obtained for the transition factor of an arbitrary fully discrete bicompact scheme with integration in time by a Runge–Kutta method. Stability and monotonicity of the first-order in time scheme are investigated, dissipative and dispersion properties of the third-order in time scheme are analyzed. Advantages of the new schemes relative to their centered counterparts are demonstrated.
作者简介
M. Bragin
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)
编辑信件的主要联系方式.
Email: michael@bragin.cc
俄罗斯联邦, Moscow
参考
- Рогов Б.В., Михайловская М.Н. О сходимости компактных разностных схем // Матем. моделирование. 2008. Т. 20. № 1. С. 99–116.
- Рогов Б.В., Михайловская М.Н. Монотонные бикомпактные схемы для линейного уравнения переноса // Матем. моделирование. 2011. Т. 23. № 6. С. 98–110.
- Chikitkin A.V., Rogov B.V., Utyuzhnikov S.V. High-order accurate monotone compact running scheme for multidimensional hyperbolic equations // Appl. Numer. Math. 2015. V. 93. P. 150–163.
- Bragin M.D., Rogov B.V. Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations // Applied Numerical Mathematics. 2020. V. 151. P. 229–245.
- Брагин М.Д. Бикомпактные схемы для уравнений Навье-Стокса в случае сжимаемой жидкости // Докл. АН. 2023. Т. 509. С. 17–22.
- Чикиткин А.В. Бикомпактные схемы для многомерных гиперболических уравнений и их эффективная реализация: дис. … канд. физ.-мат. наук: 01.01.07. М.: МФТИ(ГУ), 2016. 89 с.
- Толстых А.И. Компактные разностные схемы и их применение в задачах аэрогидродинамики. М.: Наука, 1990. 230 c.
- Lele S.K. Compact finite difference schemes with spectral-like resolution // J. Comput. Phys. 1992. V. 103. № 1. P. 16–42.
- Rogov B.V. Dispersive and dissipative properties of the fully discrete bicompact schemes of the fourth order of spatial approximation for hyperbolic equations // Appl. Numer. Math. 2019. V. 139. P. 136–155.
- Chikitkin A.V., Rogov B.V. Family of central bicompact schemes with spectral resolution property for hyperbolic equations // Appl. Numer. Math. 2019. V. 142. P. 151–170.
- Брагин М.Д., Рогов Б.В. О единственности высокоточной бикомпактной схемы для квазилинейных уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. 2014. Т. 54. № 5. С. 815–820.
- Хайрер Э., Нëрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи: пер. с англ. М.: Мир, 1990. 512 c.
补充文件
