Accounting for phase limitations during intense acceleration of a mobile robot and its' motion in drift mode

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of effectively controlling the traction of an all-wheel drive wheeled robot after a sharp turn due to the sudden appearance of a long obstacle on the way has been solved. It is assumed that during steering the body is parallel to the obstacle and the front wheels are aligned. It is required to ensure acceleration along the obstacle and at the same time avoid a side collision with it. The solution is based on the so-called linear tangent law, adapted to consider phase restrictions. At a finite time interval, the speed of wheel rotation was obtained during lateral movement in drift mode and subsequent acceleration on the verge of slipping along a straight line, which is as close as possible to the boundary of the obstacle. The corresponding trajectory is also shown. The dependence of the longitudinal speed developed at the end of the maneuver on the initial distance to the obstacle and the time of the maneuver was studied. The left-side limits of wheel angular acceleration and power at the end of the sliding section are determined. The found trajectory is compared with some other trajectories consisting of a curved and straight section. As a result of numerical calculations, it is shown that it is more effective.

About the authors

S. A. Reshmin

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: reshmin@ipmnet.ru

Corresponding Member of RAS

Russian Federation, Moscow

M. T. Bektybaeva

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; RUDN University

Email: madi8991@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Борисов А.В., Мамаев И.С., Килин А.А. Избранные задачи неголономной механики. М.; Ижевск: Институт компьютерных исследований, 2005. 289 с.
  2. Девянин Е.А. О движении колесных роботов / Доклады научной школы-конференции «Мобильные роботы и мехатронные системы». М., 1998. С. 169–200.
  3. Каленова В.И., Карапетян А.В., Морозов В.М., Салмина М.А. Неголономные механические системы и стабилизация движения // Фундаментальная и прикладная математика. 2005. Т. 11. № 7. С. 117–158.
  4. Мартыненко Ю.Г., Ленский А.В., Кобрин А.И. Декомпозиция задачи управления мобильным одноколесным роботом // Мобильные роботы: робот-колесо и робот-шар / Сб. работ под ред. А.В. Борисова и др. М.; Ижевск: Институт компьютерных исследований, 2013. С. 205–209.
  5. Мартыненко Ю.Г., Формальский А.М. К теории управления моноциклом // ПММ. 2005. Т. 69. Вып. 4. С. 569–583.
  6. Формальский А.М. Управление движением неустойчивых объектов. М.: Физматлит, 2012. 232 с.
  7. Журавлев В.Ф. О плоских автоколебаниях колеса на консольной подвеске // Изв. РАН. МТТ. 2012. № 2. С. 3–8.
  8. Журавлев В.Ф., Климов Д.М., Плотников П.К. Новая модель шимми // Изв. РАН. МТТ. 2013. № 5. C. 13–23.
  9. Журавлев В.Ф., Розенблат Г.М. О колебаниях колесного экипажа при наличии трения // ДАН. 2011. Т. 436. № 5. С. 627–630.
  10. Журавлев В.Ф., Розенблат Г.М. О неустойчивости экипажа в вертикальной плоскости при прямолинейном движении с учетом сил трения // Изв. РАН. МТТ. 2011. № 4. С. 3–17.
  11. Решмин С.А. Анализ условий потери тяги транспортного средства при интенсивном старте // Изв. РАН. ТиСУ. 2019. № 3. С. 24–33. doi: 10.1134/S000233881903017X
  12. Решмин С.А. Качественный анализ нежелательного эффекта потери силы тяги транспортного средства во время интенсивного старта // ДАН. 2019. Т. 484. № 3. С. 289–293. doi: 10.31857/S0869-56524843289-293
  13. Бутарович Д.О., Косицын Б.Б., Котиев Г.О. Метод разработки энергоэффективного закона управления электробусом при движении по городскому маршруту // Труды НАМИ. 2017. № 2. С. 16–27.
  14. Косицын Б.Б. Экспериментальное исследование энергоэффективного закона управления движением электробуса на городском маршруте // Журнал автомобильных инженеров. 2017. № 5. С. 15–23.
  15. Косицын Б.Б., Чжэн Х., Газизуллин Р.Л. Модернизация управляющей и измерительной систем стенда “Грунтовый канал” и разработка математической модели движения колеса в условиях стенда // Труды НАМИ. 2021. № 1. С. 25–34. doi: 10.51187/0135-3152-2021-1-25-34
  16. Брайсон А., Хо Ю-ши. Прикладная теория оптимального управления. М.: Мир, 1972. 544 с.
  17. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. М.: Высшая школа, 2003. 614 с.
  18. Деменков Н.П. Оптимальное управление в классическом вариационном исчислении. М.: Издательство МГТУ им. Н.Э. Баумана, 2017. 133 с.
  19. Охоцимский Д.Е., Энеев Т.М. Некоторые вариационные задачи, связанные с запуском искусственного спутника Земли // УФН. 1957. Т. 63. № 1. С. 5–32.
  20. Исаев В.К. Принцип максимума Л.С. Понтрягина и оптимальное программирование тяги ракет // Автомат. и телемех. 1961. Т. 22. Вып. 8. С. 986–1001.
  21. Розенблат Г.М. Об оптимальном повороте твердого тела при помощи внутренних сил // Докл. РАН. Математика, информатика, процессы управления. 2022. Т. 505. № 1. С. 92–99. doi: 10.31857/S2686954322040154
  22. Бектыбаева М.Т., Решмин С.А. Методика решения задач оптимального управления механическими системами при ограничении на модуль управляющей силы // Modern European Researches. 2023. № 1 (Т. 1). С. 38–44.
  23. Решмин С.А. Оптимальное управление силой тяги при скоростном маневрировании в условиях сухого трения // ПММ. 2023. Т. 87. Вып. 4. С. 604–617.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».