BERNSTEIN INEQUALITY FOR RIESZ DERIVATIVE OF FRACTIONAL ORDER LESS THAN 1 OF ENTIRE FUNCTION OF EXPONENTIAL TYPE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire functions of exponential type in the uniform norm on the real line. The interpolation formula for this operator is obtained; this formula has non-equidistant nodes. By means of this formula, the sharp Bernstein inequality is obtained for all \(0 < \alpha < 1\), more precisely, the extremal entire function and the exact constant are written out.

Sobre autores

A. Leont’eva

Ural Federal University

Autor responsável pela correspondência
Email: lao-imm@yandex.ru
Russian Federation, Yekaterinburg

Bibliografia

  1. Горбачев Д.В. Точные неравенства Бернштейна – Никольского для полиномов и целых функций экспоненциального типа // Чебышевский сборник. 2021. Т. 22. № 5. С. 58–110. https://doi.org/10.22405/2226-8383-2021-22-5-58-110
  2. Арестов В.В. Об интегральных неравенствах для тригонометрических полиномов и их производных // Изв. АН СССР. Сер. Мат. 1981. Т. 45. № 1. С. 3–22.
  3. Арестов В.В., Глазырина П.Ю. Неравенство Бернштейна – Сеге для дробных производных тригонометрических полиномов // Тр. ИММ УрО РАН. 2014. Т. 20. № 1. С. 17–31.
  4. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987.
  5. Civin P. Inequalities for trigonometric integrals // Duke Math. J. 1941. V. 8. № 4. P. 656–665. https://doi.org/10.1215/S0012-7094-41-00855-4
  6. Лизоркин П.И. Оценки тригонометрических интегралов и неравенство Бернштейна для дробных производных // Изв. АН СССР. Сер. мат. 1965. Т. 4. № 3. С. 109–126.
  7. Stein E.M. A characterization of functions arising as potentials. I // Bull. Amer. Math. Soc. 1961. V. 67. № 1. P. 102–104.
  8. Лизоркин П.И. Описание пространств в терминах разностных сингулярных интегралов // Матем. сб. 1970. Т. 81(123). № 1. С. 79–91.
  9. Самко С.Г. О пространствах риссовых потенциалов // Изв. АН СССР. Сер. матем. 1976. Т. 40. № 5. С. 1143–1172.
  10. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Физматлит, 1965.
  11. Соколов Г.Т. О некоторых экстремальных свойствах тригонометрических сумм // Известия Академии наук СССР. VII серия. Отделение математических и естественных наук. 1935. Т. 6–7. С. 857–884.
  12. Szegő G. Über einen Satz des Herrn Serge Bernstein // Schrift. Königsberg. Gelehrten Gesellschaft. 1928. V. 5. № 4. P. 59–70.
  13. Kozko A.I. The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol’skii inequality for trigonometric polynomials // East J. Approx. 1998. V. 4. № 3. P. 391–416.
  14. Arestov V.V., Glazyrina P.Yu. Sharp integral inequalities for fractional derivatives of trigonometric polynomials // J. Approx. Theory. 2012. V. 164. № 11. P. 1501–1512. https://doi.org/10.1016/j.jat.2012.08.004
  15. Леонтьева А.О. Неравенство Бернштейна–Сегё для производной Рисса тригонометрических полиномов в пространствах с классическим значением точной константы // Матем. сборник. 2023. Т. 214. № 3. С. 135–152. https://doi.org/10.4213/sm982210.4213/sm9822
  16. Ватсон Г.Н. Теория бесселевых функций. М.: ИЛ. 1949.
  17. Владимиров В.С. Уравнения математической физики. М.: Физматлит, 1981.
  18. Frappier C., Olivier P. A quadrature formula involving zeros of Bessel functions // Math. of Computation. 1993. V. 60. № 201. P. 303–316. https://doi.org/10.2307/2153168
  19. Grozev G.R., Rahman Q. I. A quadrature formula with zeros of Bessel functions as nodes // Math. of Computation. 1995. V. 64. № 210. P. 715–725. https://doi.org/10.2307/2153447
  20. Горбачев Д.В. Экстремальные задачи для целых функций экспоненциального сферического типа // Матем. заметки. 2000. Т. 68. № 2. С. 179–187. https://doi.org/10.4213/mzm936
  21. Горбачев Д.В. Экстремальная задача для периодических функций с носителем в шаре Матем. заметки. 2001. Т. 69. № 3. С. 346–352. https://doi.org/10.4213/mzm508

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © А.О. Леонтьева, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».