MATHEMATICAL MODELING OF TUNGSTEN MELTING IN EXPOSURE TO PULSED ELECTRON BEAM

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper is devoted to mathematical modeling of the melting process in a sample under the influence of a pulsed thermal load based on the solution of the two-phase Stefan problem. The free boundary is ignoring during the calculation, since the numerical model is based on the Samarsky approach. The calculation in axially symmetric geometry allowed us to show that about a quarter of the incident energy is consumed in the center of the melt region. This is five times more than estimates based on the solution of the one-dimensional heat equation give. Considering the evaporation of the substance a good correspondence between the calculated and experimental temperatures of the cooling surface and the rate of narrowing of the melt region is obtained. The results of mathematical modeling confirmed the existence of an evaporation cooling mode when tungsten is heated by an electron beam significantly above the melting threshold.

Sobre autores

G. Lazareva

Рeoples Friendship University of Russia

Autor responsável pela correspondência
Email: lazarevanovosibirsk@gmail.com
Russian, Moscow

A. Arakcheev

Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences

Autor responsável pela correspondência
Email: asarakcheev@gmail.com
Russian, Novosibirsk

V.A. Popov

Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences

Autor responsável pela correspondência
Email: v.a.popov94@gmail.com
Russian, Novosibirsk

Bibliografia

  1. Carpentier-Chouchana S., Hirai T., Escourbiac F., Durocher A., Fedosov A., Ferrand L., Firdaouss M., Kocan M., Kukushkin A.S., Jokinen T., Komarov V., Lehnen M., Merola M., Mitteau R., Pitts R.A., Stangeby P.C., Sugihara M., “Status of the ITER full-tungsten divertor shaping and heat load distribution analysis” Physica Scripta, T. 159, 014002, 2014.
  2. Shi Y., Miloshevsky G., Hassanein A., “Boiling induced macroscopic erosion of plasma facing components in fusion” Fusion Engineering and Design, Т. 86(2–3), p. 155–162, 2011.
  3. Huber A., Arakcheev A., Sergienko G., Steudel I., Wirtz M., Burdakov A.V., Coenen J.W., Kreter A., Linke J., Mertens Ph., Philipps V., Pintsuk G., Reinhart M., Samm U., Shoshin A., Schweer B., Unterberg B., Zlobinski M., “Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten” Physica Scripta, T. 159, 014005, 2014.
  4. Safronov V.M., Arkhipov N.I., Klimov N.S., Landman I.S., Petrov D.S., Podkovyrov V.L., Poznyak I.M., Toporkov D.A., Zhitlukhin A.M. , “Investigation of erosion mechanisms and erosion products in tungsten targets exposed to plasma heat loads relevant to ELMS and mitigated disruptions in ITER” Problems of Atomic Science and Technology. Series: Plasma Physics (14), pp. 52–54, 2008.
  5. Huber A., Burdakov A., Zlobinski M., Wirtz M., Coenen J. W., Linke J.,. Mertens Ph, Philipps V., Pintsuk G., Schweer B., Sergienko G., Shoshin A., Samm U., Unterberg B., “Investigation of the impact on tungsten of transient heat loads induced by laser irradiation, electron beams and plasma guns” Fusion Science and Technology, 63 (1T), pp. 197–200, 2013.
  6. Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A. Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads, AIP Conference Proceedings, 1771, 060004 (2016).
  7. Apushkinskaya D. Free boundary problems: Regularity properties near the fixed boundary, Lecture Notes in Mathematics, 2218. Springer (2018).
  8. Trunev Yu.A., Arakcheev A.S., Burdakov A.V., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Mekler K.I., Popov V.A., Shoshin A.A., Skovorodin D.I., Vasilyev A.A., Vyacheslavov L.N., Heating of tungsten target by intense pulse electron beam, AIP Conference Proceedings 1771, 060016 (2016).
  9. Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача // М.: Едиториал УРСС, 2003, 784 с.
  10. Яненко Н.Н., Метод дробных шагов решения многомерных задач математической физики // Новосибирск, 1967. 196 с.
  11. Davis J.W., Smith P.D., ITER material properties handbook, J. Nucl. Mater. 233 (1996) 1593–1596.
  12. Ho C.Y., Powell R.W., Liley P.E. Thermal conductivity of elements, Journal of Physical and Chemical Reference Data, 1, p. 279 (1972).
  13. Талуц С.Г. Экспериментальное исследование теплофизических свойств переходных металлов и сплавов на основе железа при высоких температурах: Автореф. дис. д-ра физ.-мат. наук: 01.04.14, Екатеринбург: 2001. 38 с.
  14. Arakcheev A.S., Apushkinskaya D.E., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Lazareva G.G., Maksimova A.G., Popov V.A., Snytnikov A.V., Trunev Yu.A., Vasilyev A.A., Vyacheslavov L.N. Two-dimensional numerical simulation of tungsten melting under pulsed electron beam, Fusion Engineering and Design, vol. 132, p. 13–17 (2018).
  15. Vasilyev A.A., Arakcheev A.S., Bataev I.A., Bataev V.A., Burdakov A.V., Kandaurov I.V., Kasatov A.A., Kurkuchekov V.V., Mekler K.I., Popov V.A., Shoshin A.A., Skovorodin D.I., Trunev Yu.A., Vyacheslavov L.N., In-situ imaging of tungsten surface modification under ITER-like transient heat loads, Nucl. Matter Energy 12 (2017) 553–558.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (343KB)
3.

Baixar (80KB)
4.

Baixar (567KB)

Declaração de direitos autorais © Г.Г. Лазарева, А.С. Аракчеев, В.А. Попов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies