SUPPRESSION OF SPECKLE NOISE IN MEDICAL IMAGES VIA SEGMENTATION-GROUPING OF 3D OBJECTS USING SPARSE CONTOURLET REPRESENTATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Novel filtering method in medical images (MRI and US) that are contaminated by noise consisting of mixture speckle and additive noise is designed in this paper. Proposed method consists of several stages: segmentation of image areas, grouping of similar 2D structures in accordance mutual information (MI) measure, homomorphic transformation, 3D filtering approach based on sparse representation in contourlet (CLT) space with posterior filtering in accordance with MI weights similar 2D structures, and final inverse homomorphic transformation. During numerous experiments, the developed method has confirmed their superiority in term of visual image quality via human visual perception as well as in better criteria values, such as PSNR, SSIM, EPI and alfa for different test MRI and US mages corrupted by speckle noise.

Авторлар туралы

V. Kravchenko

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Bauman Moscow State Technical University

Хат алмасуға жауапты Автор.
Email: kvf-ok@mail.ru
Russian Federation, Moscow; Russian Federation, Moscow

Yu. Guliaev

Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gulyaev@cplire.ru
Russian Federation, Moscow

V. Ponomaryov

Instituto Politecnico Nacional de Mexico

Хат алмасуға жауапты Автор.
Email: vponomar@ipn.mx
Mexico, Mexico

G. Bojorges

Instituto Politecnico Nacional de Mexico

Хат алмасуға жауапты Автор.
Email: gibran.aranda.bionics@gmail.com
Mexico, Mexico

Әдебиет тізімі

  1. Кравченко В.Ф., Пономарев В.И., Пустовойт В.И., Аранда-Бохоргес Г. // Доклады РАН. Математика, информатика, процессы управления. 2021. Т. 499. № 2. С. 67–72.
  2. Aranda-Bojorges G., Ponomaryov V., Reyes-Reyes R., Cruz-Ramos C., Sadovnychiy S. // IEEE Geosci. Rem. Sens. Lett. 2020. V. 19, art. 4018005. https://doi.org/10.1109/LGRS.2021.3108774
  3. Reyes-Reyes R., Aranda-Bojorges G., Garcia-Salgado B., Ponomaryov V., Cruz-Ramos C., Sadovnychiy S. // Sensors. 2022. V. 22. 5113. https://doi.org/10.3390/s22145113
  4. Kravchenko V., Perez H., Ponomaryov V. Adaptive Signal Processing of Multidimensional Signals with Applications. Moscow: Fizmatlit, 2009.
  5. Dabov K., Foi A., Katkovnik V., Egiazarian K. // IEEE Trans. Image Process. 2007. V. 16. № 8. P. 2080–2095.
  6. Santos C.A.N., Martins D.L.N., Mascarenhas N.D.A. // IEEE Trans. Image Process. 2017. V. 26. 2632–2643. https://doi.org/10.1109/TIP.2017.2685339
  7. Sameera V.M.S., Sudhish N.G. // Sensing Imaging. 2017. V. 18. P. 1–28. https://doi.org/10.1007/s11220-017-0181-8
  8. Jubairahmed L., Satheeskumaran S., Venkatesan C. // Clust. Comput. 2019. V. 22. P. 11237–11246.
  9. Jaburalla M.Y., Lee H.N. // Appl. Sci. 2018. V. 8. 903. P. 1–17. https://doi.org/10.3390/app8060903
  10. Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S. // IEEE Trans. Pattern Anal. Mach. Intell. 2012. V. 34. P. 2274–2282.
  11. Jensen J.A. // Med. Biol. Eng. Comput. 1996. V. 34. P. 351–352.
  12. Wang Z., Bovik A. // IEEE Signal Process. Mag. 2009. V. 26. № 1. P. 98–117.
  13. https://openfmri.org/dataset/ (accessed: June21, 2022).
  14. http://splab.cz/en/download/databaze/ultrasound (accessed: June 19, 2022).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (375KB)
3.

Жүктеу (2MB)

© В.Ф. Кравченко, Ю.В. Гуляев, В.И. Пономарев, Г. Аранда-Бохоргес, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».