A GENERALIZATION OF THE FIRST BEURLING AND MALLIAVIN THEOREM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we announce a result that generalizes the first Beurling–Malliavin theorem. In other words, we give a new sufficient condition on a function, which guarantees that it belongs to the Beurling–Malliavin class of majorants. It is also shown that the main result of this article is sharp in many senses.

About the authors

I. M. Vasilyev

St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Author for correspondence.
Email: milavas@mail.ru
Russian, Saint-Petersburg

References

  1. Belov Y., Havin V. The Beurling–Malliavin Multiplier Theorem and its analogs for the de Branges spaces. Springer series: Operator theory, ed. Alpay. 2015. V. 1. P. 581–609.
  2. Beurling A., Malliavin P. On Fourier transforms of measures with compact support, Acta Math. 1962. V. 107. P. 291–309.
  3. Bourgain J., Dyatlov S. Spectral gaps without the pressure condition, Annals of Math. 2018. V. 187. P. 825–867.
  4. De Branges L. Hilbert spaces of entire functions, Prentice-Hall, 1968.
  5. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part I: Slow winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1231–1263.
  6. Havin V., Mashreghi J. Admissible majorants for model subspaces of H2, Part II : Fast winding of the generating inner function, Canad. J. Math. 2003. V. 55. Issue 6. P. 1264–1301.
  7. Kislyakov S., Perstneva P. Indicator functions with uniformly bounded Fourier sums and large gaps in the spectrum, Journal of Fourier Analysis and Applications. 2022.
  8. Makarov N., Poltoratski A. Beurling-Malliavin theory for Toeplitz kernels, Invent. Math. 2010. V. 180. № 3. P. 443–480.
  9. Mashregi D., Nazarov F., Khavin V. The Beurling–Malliavin multiplier theorem: The seventh proof, Algebra i Analiz. 2005. V. 17. № 5. P. 3–68.
  10. Nazarov F., Olevskii A. A Function with Support of Finite Measure and “Small” Spectrum, 50 Years with Hardy Spaces. In: Baranov A., Kisliakov S., Nikolski N. (eds) 50 Years with Hardy Spaces. Operator Theory: Advances and Applications, V. 261. Birkhäuser.
  11. Poltoratski A. Spectral gaps for sets and measures, Acta Math. 2012. V. 208. № 1. P. 151–209.
  12. Redheffer H. Completeness of sets of complex exponentials, Adv. Math. 1977. V. 24. Issue 1. P. 1–62.
  13. Vasilyev I. On the multidimensional Nazarov lemma, Proc. Amer. Math Soc. 2022. V. 150. № 4. P. 1601–1611.
  14. Vasilyev I. On the first Beurling–Malliavin Theorem, https://arxiv.org/pdf/2203.16674.pdf. 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 И.М. Васильев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».