ON THE APPLICATION OF THE SOLUTION OF THE DEGENERATE NONLINEAR BURGERS EQUATION WITH A SMALL PARAMETER AND THE THEORY OF p-REGULARITY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article discusses various modifications of the nonlinear Burgers equation with small parameter and degenerate in solution of the form

\(F(u,\varepsilon ) = {{u}_{t}} - {{u}_{{xx}}} + u{{u}_{x}} + \varepsilon {{u}^{2}} - f(x,t) = 0,\)            (1)

where \(F:\Omega \to C([0,\pi ] \times [0,T])\), \(T > 0\), \(\Omega = {{C}^{2}}([0,\pi ] \times [0,T]\,)\,\mathbb{R}\) and \(u(0,t) = u(\pi ,t) = 0\), \(u(x,0) = \varphi (x)\), \(f(x,t) \in C([0,\pi ] \times [0,T])\), \(\varphi (x) \in C[0,\pi ]\). We will be interested in the most important in applications case of a small parameter ε with oscillating initial conditions of the form \(\varphi (x) = k\sin x\), where k –some, generally speaking, constant depending on ε, and study the question of the existence of a solution in neighborhood of the trivial \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), which corresponds to \(k = k{\kern 1pt} * = 0\) and at what initial Under certain conditions on the values of k, it is possible to construct an analytical approximation of this solution for small ε.

We will look for a solution in the traditional way of separation of variables on a subspace of functions of the form \(u(x,t) = v(t)u(x)\), where \(v(t) = c{{e}^{{ - t}}}\), \(u(x) \in {{\mathcal{C}}^{2}}([0,\pi ])\). In this case, the problem under consideration is degenerate at the point \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), since \({\text{Im}}F_{u}^{'}(u{\kern 1pt} *,\varepsilon {\kern 1pt} *) \ne Z = \mathcal{C}([0,\pi ] \times [0,T])\). This follows from the Sturm-Liouville theory. To achieve our goals, we apply the apparatus of p-regularity theory [6, 7, 15, 16] and show that the mapping \(F(u,\varepsilon )\) is 3-regular at the point \((u{\kern 1pt} *,\varepsilon {\kern 1pt} *) = (0,0)\), т.е. p = 3.

Sobre autores

B. Medak

Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences

Autor responsável pela correspondência
Email: bmedak@uph.edu.pl
Poland, Siedlce

A. Tret’yakov

Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences; Federal Research Center  Informatics and Control  of the Russian Academy of Sciences; System Research Institute, Polish Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: tret@uph.edu.pl
Poland, Siedlce; Russian Federation, Moscow; Poland, Warsaw; Russian Federation, Moscow oblast, Dolgoprudny

Bibliografia

  1. Baxley J.V. Nonlinear second-order boundary value problems: Continuous dependence and periodic boundary conditions // Rend. Circ. Mat. Palermo. 1982. V. 31. № 2. P. 305–320.
  2. Brezhneva O.A., Tret’yakov A.A. Marsden: Higher-order implicit function theorems and degenerate nonlinear boundary-value problems // Communications on Pure and Applied Analysis. 2008. V. 7. № 2. P. 293–315.
  3. Gaines R. Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems // Pacific J. Math. 1969. V. 28. P. 327–336.
  4. Grzegorczyk W., Medak B., Tret’yakov A.A. Application of p-regularity theory to nonlinear boundary value problems // Boundary Value Problems. 2013. V. 2013. P. 251, http:/www.boundaryvalueproblems.com/content/2013/1/251
  5. Ingram S.K. Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems // Pacific J. Math. 1972. V. 41. P. 395–408.
  6. Измаилов А.Ф., Третьяков А.А. Фактор-анализ нелинейных отображений. М.: Наука, 1994.
  7. Измаилов А.Ф., Третьяков А.А. 2-регулярные решения нелинейных проблем. Теория и численные методы. М.: Наука, 1999.
  8. Medak B. Development of p-regularity apparatus and its application to describing the structure of solution sets of degenerated differential equations, Doctoral thesis, UMCS, Lublin, 2013 (in Polish).
  9. Medak B., Tret’yakov A.A. Existence of periodic solutions to nonlinear p-regular boundary value problem // Boundary Value Problems. 2015. V. 2015. P. 91. https://doi.org/10.1186/s13661-015-0360-2
  10. Medak B., Tret’yakov A.A. Application of p-regularity theory to the Duffing equation // Boundary Value Problems. 2017. V. 2017. P. 85. https://doi.org/10.1186/s13661-017-0815-8
  11. Medak B., Tret’yakov A.A. Continuous dependence of the singular nonlinear Van der Pol equation solutions with respect to the boundary conditions: Elements of p-regularity theory // Journal of Dynamics and Differential Equations. 2021. V. 33. P. 1087–1107. https://doi.org/10.1007/s10884-020-09849-0
  12. Michael E.A. Continuous selector // Ann. Math. 1956. V. 64. P. 562–580.
  13. Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физике. М.: МГУ, Наука, 2004.
  14. Тихонов А.Н., Василева А.Б., Свешников А.Г. Дифференциальные уравнения. М.: Наука, Москва, Физматлит, 1998.
  15. Tret’yakov A.A. The implicit function theorem in degenerate problems // Russ. Math. Surv. 1987. V. 42. P. 179–180.
  16. Tret’yakov A.A., Marsden J.E. Factor analysis of nonlinear mappings: p-regularity theory // Communications on Pure and Applied Analysis. 2003. V. 2. № 4. P. 425–445.

Declaração de direitos autorais © Б. Медак, А.А. Третьяков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies