Synthesis of 4-amino-1,3-diarylimidazolium chlorides
- Авторлар: Shevchenko M.A.1, Pasyukov D.V.1, Lavrentiev I.V.1, Minyaev M.E.2, Chernyshev V.M.1
-
Мекемелер:
- Platov South-Russian State Polytechnic University (NPI)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Шығарылым: Том 515, № 1 (2024)
- Беттер: 18-29
- Бөлім: CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/259115
- DOI: https://doi.org/10.31857/S2686953524020021
- EDN: https://elibrary.ru/zsazmw
- ID: 259115
Дәйексөз келтіру
Аннотация
The first representatives of 4-amino-1,3-diarylimidazolium chlorides have been synthesized by heating chloroacetonitrile with N,Nʹ-diarylformamidines containing alkyl substituents at positions 2 and 6 of the N-aryl groups. The possibility of postfunctionalization of the obtained aminoimidazolium salts by acylation of the amino group was demonstrated, as well as their applicability as precursors of N-heterocyclic carbenes in the synthesis of Cu/NHC complexes after preliminary protection of the amino group.
Негізгі сөздер
Толық мәтін

Авторлар туралы
M. Shevchenko
Platov South-Russian State Polytechnic University (NPI)
Email: chern13@yandex.ru
Ресей, 346428, Novocherkassk
D. Pasyukov
Platov South-Russian State Polytechnic University (NPI)
Email: chern13@yandex.ru
Ресей, 346428, Novocherkassk
I. Lavrentiev
Platov South-Russian State Polytechnic University (NPI)
Email: chern13@yandex.ru
Ресей, 346428, Novocherkassk
M. Minyaev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: chern13@yandex.ru
Ресей, 119991, Moscow
V. Chernyshev
Platov South-Russian State Polytechnic University (NPI)
Хат алмасуға жауапты Автор.
Email: chern13@yandex.ru
Ресей, 346428, Novocherkassk
Әдебиет тізімі
- Herrmann W.A. // Angew. Chem., Int. Ed. 2002. V. 41. № 8. P. 1290–1309. https://doi.org/10.1002/1521-3773(20020415) 41:8<1290::AID-ANIE1290>3.0.CO;2-Y
- Díez-González S., Marion N., Nolan S.P. // Chem. Rev. 2009. V. 109. № 8. P. 3612–3676. https://doi.org/10.1021/cr900074m
- Bellotti P., Koy M., Hopkinson M.N., Glorius F. // Nat. Rev. Chem. 2021. V. 5. № 10. P. 711–725. https://doi.org/10.1038/s41570-021-00321-1
- Nahra F., Nelson D.J., Nolan S.P. // Trends Chem. 2020. V. 2. № 12. P. 1096–1113. https://doi.org/10.1016/j.trechm.2020.10.003
- Chernyshev V.M., Denisova E.A., Eremin D.B., Ananikov V.P. // Chem. Sci. 2020. V. 11. № 27. P. 6957–6977. https://doi.org/10.1039/D0SC02629H
- Benhamou L., Chardon E., Lavigne G., Bellemin-Laponnaz S., César V. // Chem. Rev. 2011. V. 111. № 4. P. 2705–2733. https://doi.org/10.1021/cr100328e
- Hopkinson M.N., Richter C., Schedler M., Glorius F. // Nature. 2014. V. 510. № 7506. P. 485–496. https://doi.org/10.1038/nature13384
- Scattolin T., Nolan S.P. Trends Chem. 2020. V. 2. № 8. P. 721–736. https://doi.org/10.1016/j.trechm.2020.06.001
- Peris E. // Chem. Rev. 2018. V. 118. № 19. P. 9988–10031. https://doi.org/10.1021/acs.chemrev.6b00695
- Pasyukov D.V., Shevchenko M.A., Shepelenko K.E., Khazipov O.V., Burykina J.V., Gordeev E.G., Minyaev M.E., Chernyshev V.M., Ananikov V.P. // Angew. Chem., Int. Ed. 2022. V. 61. № 9. P. e202116131. https://doi.org/10.1002/anie.202116131
- Pasyukov D.V., Shevchenko M.A., Astakhov A.V., Minyaev M.E., Zhang Y., Chernyshev V.M., Ananikov V.P. // Dalton Trans. 2023. V. 52. № 34. P. 12067–12086. https://doi.org/10.1039/D3DT02296J
- Zhang Y., César V., Storch G., Lugan N., Lavigne G. // Angew. Chem., Int. Ed. 2014. V. 53. № 25. P. 6482–6486. https://doi.org/10.1002/anie.201402301
- Zhang Y., César V., Lavigne G. // Eur. J. Org. Chem. 2015. V. 2015. № 9. P. 2042–2050. https://doi.org/10.1002/ejoc.201500030
- Zhang Y., Lavigne G., Lugan N., César V. // Chem. Eur. J. 2017. V. 23. № 55. P. 13792–13801. https://doi.org/10.1002/chem.201702859
- Chesnokov V.V., Shevchenko M.A., Soliev S.B., Tafeenko V.A., Chernyshev V.M. // Russ. Chem. Bull. 2021. V. 70. № 7. P. 1281–1289. https://doi.org/10.1007/s11172-021-3212-5
- Danopoulos A.A., Braunstein P. // Chem. Commun. 2014. V. 50. № 23. P. 3055–3057. https://doi.org/10.1039/C3CC49517E
- Huber S.M., Heinemann F.W., Audebert P., Weiss R. // Chem. Eur. J. 2011. V. 17. № 46. P. 13078–13086. https://doi.org/10.1002/chem.201101999
- Gómez-Suárez A., Nelson D.J., Nolan S.P. // Chem. Commun. 2017. V. 53. № 18. P. 2650–2660. https://doi.org/10.1039/C7CC00255F
- Nasr A., Winkler A., Tamm M. // Coord. Chem. Rev. 2016. V. 316. P. 68–124. https://doi.org/10.1016/j.ccr.2016.02.011
- Danopoulos A.A., Monakhov K.Yu., Braunstein P. // Chem. Eur. J. 2013. V. 19. № 2. P. 450–455. https://doi.org/10.1002/chem.201203488
- Chernenko A.Yu., Astakhov A.V., Kutyrev V.V., Gordeev E.G., Burykina J.V., Minyaev M.E., Khrustalev V.N., Chernyshev V.M., Ananikov V.P. // Inorg. Chem. Front. 2021. V. 8. № 13. P. 3382–3401. https://doi.org/10.1039/D1QI00453K
- Chernenko A.Yu., Baydikova V.A., Minyaev M.E., Chernyshev V.M. // Russ. Chem. Bull. 2024. V. 73. № 4. P. 932–949. https://doi.org/10.1007/s11172-024-4206-x
- Pyatachenko A.S., Chernenko A.Yu., Soliev S.B., Minyaev M.E., Chernyshev V.M. // Mendeleev Commun. 2024. V. 34. № 1. P. 39–42. https://doi.org/10.1016/j.mencom.2024.01.012
- Chernenko A.Yu., Baydikova V.A., Kutyrev V.V., Astakhov A.V., Minyaev M.E., Chernyshev V.M., Ananikov V.P. // ChemCatChem. 2024. V. 16. P. e202301471. https://doi.org/10.1002/cctc.202301471
- Pasyukov D.V., Chernenko A.Yu., Shepelenko K.E., Kutyrev V.V., Khrustalev V.N., Chernyshev V.M. // Mendeleev Commun. 2021. V. 31. № 2. P. 176–178. https://doi.org/10.1016/j.mencom.2021.03.010
- César V., Tourneux J.-C., Vujkovic N., Brousses R., Lugan N., Lavigne G. // Chem. Commun. 2012. V. 48. № 17. P. 2349. https://doi.org/10.1039/c2cc17870b
- Mackenzie G., Wilson H.A., Shaw G., Ewing D.J. // Chem. Soc. Perkin Trans. 1. 1988. № 9. P. 2541–2546. https://doi.org/10.1039/P19880002541
- Ewing D.F., Mackenzie G., Rouse S.P.N., Scrowston R.M. // Nucleosides and Nucleotides. 1995. V. 14. № 3–5. P. 367–368. https://doi.org/10.1080/15257779508012384
- Groziak M.P., Huan Z.-W., Ding H., Meng Z., Stevens W.C., Robinson P.D. // J. Med. Chem. 1997. V. 40. № 21. P. 3336–3345. https://doi.org/10.1021/jm970301s
- Chattopadhyay G., Ray P.S. // Indian J. Chem. Sec. B. 2013. V. 52B. P. 546–552.
- Masuda J. // Acta Cryst. 2008. V. E64. № 8. P. o1447. https://doi.org/10.1107/S160053680802076X
- Cole M.L., Junk P.C. // J. Organomet. Chem. 2003. V. 666. № 1. P. 55–62. https://doi.org/10.1016/S0022-328X(02)02033-8
- Anulewicz R., Wawer I., Krygowski T.M., Männle F., Limbach H.-H.J. // Am. Chem. Soc. 1997. V. 119. № 50. P. 12223–12230. https://doi.org/10.1021/ja970699h
- Chun J., Lee H.S., Jung I.G., Lee S.W., Kim H.J., Son S.U. // Organometallics. 2010. V. 29. № 7. P. 1518–1521. https://doi.org/10.1021/om900768w
- Egbert J.D., Cazin C.S J., Nolan S.P. // Catal. Sci. Technol. 2013. V. 3. № 4. P. 912–926. http://dx.doi.org/10.1039/C2CY20816D
- Beig N., Goyal V., Bansal R.K. // Beilstein J. Org. Chem. 2023. V. 19. P. 1408–1442. https://doi.org/10.3762/bjoc.19.102
- Nayak S., Gaonkar S.L. // ChemMedChem. 2021. V. 16. № 9. P. 1360–1390. https://doi.org/10.1002/cmdc. 202000836
- Nahra F., Gómez-Herrera A., Cazin C.S.J. // Dalton Trans. 2017. V. 46. № 3. P. 628–631. https://doi.org/10.1039/C6DT03687B
- Mikhaylov V.N., Balova I.A. // Russ. J. Gen. Chem. 2021. V. 91. № 11. P. 2194–2248. https://doi.org/10.1134/S1070363221110098
- Mikhaylov V.N., Kazakov I.V., Parfeniuk T.N., Khoroshilova O.V., Scheer M., Timoshkin A.Y., Balova I.A. // Dalton Trans. 2021. V. 50. № 8. P. 2872–2879. https://doi.org/10.1039/D1DT00235J
- Kaur H., Zinn F.K., Stevens E.D., Nolan S.P. // Organometallics. 2004. V. 23. № 5. P. 1157–1160. https://doi.org/10.1021/om034285a
- Mankad N.P., Gray T.G., Laitar D.S., Sadighi J.P. // Organometallics. 2004. V. 23. № 6. P. 1191–1193. https://doi.org/10.1021/om034368r
- McLean A.P., Neuhardt E.A., John J.P.St., Findlater M., Abernethy C.D. // Transition Met. Chem. 2010. V. 35. № 4. P. 415–418. https://doi.org/10.1007/s11243-010-9343-4
- Díez-González S., Escudero-Adán E.C., Benet-Buchholz J., Stevens E.D., Slawin A.M.Z., Nolan S.P. // Dalton Trans. 2010. V. 39. № 32. P. 7595–7606. https://doi.org/10.1039/C0DT00218F
- Hirano K., Urban S., Wang C., Glorius F. // Org. Lett., 2009. V. 11. № 4. P. 1019–1022. https://doi.org/10.1021/ol8029609
- Konstandaras N., Dunn M.H., Luis E.T., Cole M.L., Harper J.B. // Org. Biomol. Chem. 2020. V. 18. № 10. P. 1910–1917. https://doi.org/10.1039/D0OB00036A
- Zhukhovitskiy A.V., Mavros M.G., Van Voorhis T., Johnson J.A. // J. Am. Chem. Soc. 2013. V. 135. № 20. P. 7418–7421. https://doi.org/10.1021/ja401965d
- Dar B.A., Ahmad S.N., Wagay M.A., Hussain A., Ahmad N., Bhat K.A., Khuroo M.A., Sharma M., Singh B. // Tetrahedron Lett. 2013. V. 54. № 36. P. 4880–4884. https://doi.org/10.1016/j.tetlet.2013.06.131
- Mazloumi M., Shirini F., Goli-Jolodar O., Seddighi M. // New J. Chem. 2018. V. 42. № 8. P. 5742–5752. https://doi.org/10.1039/C8NJ00171E
- Bruker and APEX-III // Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3–10. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Cryst. 2015. V. A71. № 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Cryst. 2015. V. C71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
- Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. // J. Appl. Cryst. 2020. V. 53. № 1. P. 226–235. https://doi.org/10.1107/S1600576719014092
Қосымша файлдар
