QUANTIZATION OF ELECTRICAL CONDUCTANCE IN LAYERED Zr/ZrO2/Au MEMRISTIVE STRUCTURES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anodic zirconia nanotubes are a promising functional medium for the formation of non-volatile resistive memory cells. The current-voltage characteristics in the region of low conductivity of the fabricated Zr/ZrO2/Au memristor structures have been studied in this work. For the first time, the reversible mechanisms of formation/destruction of single quantum conductors based on oxygen vacancies, which participate in processes of multiple resistive switching between low- and high-resistance states in a nanotubular dioxide layer, have been analyzed. An equivalent electrical circuit of a parallel resistor connection have been proposed and discussed to describe the observed memristive behavior of the studied layered structures.

About the authors

A. S. Vokhmintsev

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

I. A. Petrenyov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

R. V. Kamalov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

M. S. Karabanalov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

I. A. Weinstein

NANOTECH Centre, Ural Federal University; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg; Russian Federation, 620016, Ekaterinburg

A. A. Rempel

NANOTECH Centre, Ural Federal University; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg; Russian Federation, 620016, Ekaterinburg

References

  1. Yoo H., Kim M., Kim Y.-T., Lee K., Choi J. // Catalysts. 2018. V. 8. 555. https://doi.org/10.3390/catal8110555
  2. Park J., Cimpean A., Tesler A.B., Mazare A. // Nanomaterials. 2021. V. 11. 2359. https://doi.org/10.3390/nano11092359
  3. Bashirom N., Kian T.W., Kawamura G., Matsuda A., Razak K.A., Lockman Z. // Nanotechnology. 2018. V. 29. 375701. https://doi.org/10.1088/1361-6528/aaccbd
  4. Huai X., Girardi L., Lu R., Gao S., Zhao Y., Ling Y., Rizzi G.A., Granozzi G., Zhang Z. // Nano Energy. 2019. V. 65. 104020. https://doi.org/10.1016/ j.nanoen.2019.104020
  5. Ремпель А.А., Валеева А.А., Вохминцев А.С., Вайнштейн И.А. // Усп. хим. 2021. Т. 90. № 11. С. 1397–1414. https://doi.org/10.1070/RCR4991
  6. Hazra A., Jan A., Tripathi A., Kundu S., Boppidi P.K.R., Gangopadhyay S. // IEEE Trans. Electron Devices. 2020. V. 67. P. 2197–2204. https://doi.org/10.1109/TED.2020.2983755
  7. Vokhmintsev A., Petrenyov I., Kamalov R., Weinstein I. // Nanotechnology. 2022. V. 33. 075208. https://doi.org/10.1088/1361-6528/ac2e22
  8. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L., Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. 214331. https://doi.org/10.1016/j.ccr.2021.214331
  9. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2011. V. 111. P. 1596–1636. https://doi.org/10.1021/cr100347k
  10. Yoo J., Lee K., Tighineanu A., Schmuki P. // Electrochem. Comm. 2013. V. 34. P. 177–180. https://doi.org/10.1016/j.elecom.2013.05.038
  11. Вохминцев А.С., Вайнштейн И.А., Камалов Р.В., Дорошева И.Б. // Изв. РАН. Сер. Физ. 2014. Т. 78. № 9. С. 1176–1179. https://doi.org/10.7868/S0367676514090312
  12. Du G., Li H., Mao Q., Ji Z. // J. Phys. D: Appl. Phys. 2016. V. 49. 445105. https://doi.org/10.1088/0022-3727/49/44/445105
  13. Gao S., Zeng F., Chen C., Tang G., Lin Y., Zheng Z., Song C., Pan F. // Nanotechnol. 2013. V. 24. 335201. https://doi.org/10.1088/0957-4484/24/33/335201
  14. Milano G., Aono M., Boarino L., Celano U., Hasegawa T., Kozicki M., Majumdar S., Menghini M., Miranda E., Ricciardi C., Tappertzhofen S., Terabe K., Valov I. // Adv. Mater. 2022. V. 34 № 32. 2201248. https://doi.org/10.1002/adma.202201248
  15. Xue W., Gao S., Shang J., Yi X., Liu G., Li R.-W. // Adv. Electron. Mater. 2019. V. 5 № 9. 1800854. https://doi.org/10.1002/aelm.201800854
  16. Kuzmenko A.B., van Heumen E., Carbone F., van der Marel D. // Phys. Rev. Lett. 2008. V. 100. 117401. https://doi.org/10.1103/PhysRevLett.100.117401
  17. Вохминцев А.С., Камалов Р.В., Петренев И.А., Вайнштейн И.А. Способ получения нанотрубок диоксида циркония с квантовыми проводниками. Патент РФ 2758998. 2021.
  18. Carlos E., Branquinho R., Martins R., Kiazadeh A., Fortunato E. // Adv. Mater. 2021. V. 33. 2004328. https://doi.org/10.1002/adma.202004328
  19. Waser R., Dittmann R., Staikov G., Szot K. // Adv. Mater. 2009. V. 21. P. 2632–2663. https://doi.org/10.1002/adma.200900375
  20. Petrenyov I.A., Kamalov R.V., Vokhmintsev A.S., Martemyanov N.A., Weinstein I.A. // J. Phys. Conf. Ser. 2018. V. 1124. 022004. https://doi.org/10.1088/1742-6596/1124/2/022004
  21. Gryaznov A.O., Dorosheva I.B., Vokhmintsev A.S., Kamalov R.V., Weinstein I.A. Automatized complex for measuring the electrical properties of MIM structures // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May, 2016. 7491772. https://doi.org/10.1109/SIBCON.2016.7491772
  22. Chen C.-C., Say W.C., Hsieh S.-J., Diau E.W.-G. // Appl. Phys. A. 2009. V. 95. P. 889–898. https://doi.org/10.1007/s00339-009-5093-6
  23. Zhao S., Xue J., Wang Y., Yan S. // J. Appl. Phys. 2012. V. 111. 043514. https://doi.org/10.1063/1.3682766
  24. Lyons J.L., Janotti A., Van de Walle C.G. // Microelectron. Eng. 2011. V. 88. P. 1452–1456. https://doi.org/10.1016/j.mee.2011.03.099
  25. Vokhmintsev A.S., Petrenyov I.A., Kamalov R.V., Karabanalov M.S., Weinstein I.A. // J. Lumin. 2022. V. 252. 119412. https://doi.org/10.1016/ j.jlumin.2022.119412

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (56KB)
4.

Download (206KB)

Copyright (c) 2023 А.С. Вохминцев, И.А. Петренёв, Р.В. Камалов, М.С. Карабаналов, И.А. Вайнштейн, А.А. Ремпель

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies