NONSTOICHIOMETRIC TITANIUM NITRIDES IN THE SYNTHESIS OF MAX-PHASES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for obtaining compact samples of titanium nitride solid solutions of a given composition with a yield of up to 95% is proposed. Synthesis proceeds by forming gradient structures based on TiN and non-stoichiometric titanium nitrides containing the required amount of nitrogen, followed by homogenizing annealing in argon atmosphere. It is determined that TiN0.5 nitride is an effective precursor for the shape-preserving MAX-phases synthesis during heterophase binary interaction with metallic aluminum at temperatures of about 1000–1100°C.

About the authors

L. O Lvov

Lomonosov Moscow State University; A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: lvov-lo@yandex.ru

Faculty of Materials Science

Moscow, Russian Federation; Moscow, Russian Federation

I. A Kovalev

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: vov-lo@yandex.ru
Moscow, Russian Federation

S. G Dorofeev

Lomonosov Moscow State University, Faculty of Chemistry

Email: vov-lo@yandex.ru

Faculty of Chemistry

Moscow, Russian Federation

A. S Chernyavskii

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: vov-lo@yandex.ru
Moscow, Russian Federation

E. A Goodilin

Lomonosov Moscow State University; Lomonosov Moscow State University

Email: vov-lo@yandex.ru

Corresponding Member of the RAS; Faculty of Materials Science, Faculty of Chemistry

Moscow, Russian Federation; Moscow, Russian Federation

K. A Solntsev

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: vov-lo@yandex.ru

Academician of the RAS

119991 Moscow, Russian Federation

References

  1. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hullman L., Gogotsi Y., Barsoum M.W. // Adv. Mater. 2011. V. 23. № 37. P. 4248–4253. https://doi.org/10.1002/adma.201102306
  2. Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. // Curr. Opin. Solid State Mater. Sci. 2019. V. 23. № 3. P. 149–163. http://dx.doi.org/10.1016/j.cossms.2019.02.001
  3. Gogotsi Y., Anasori B. // ACS Nano. 2019. V. 13. № 8. P. 8491–8494. https://doi.org/10.1021/acsnano.9b06394
  4. Lukatskaya M.R., Mashtalir O., Ren C.E., Dall‘Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y. // Science. 2013. V. 341. № 6153. P. 1502–1505. https://doi.org/10.1126/science.1241488
  5. Xie Y., Dall'Agnese Y., Naguib M., Gogotsi Y., Barsoum M.W., Zhuang H.L., Kent P.R. // ACS Nano. 2014. V. 8. № 9. P. 9606–9615. https://doi.org/10.1021/nn503921j
  6. Ren C.E., Hatzell K.B., Alhabeb M., Ling Z., Mahmoud K.A., Gogotsi Y. // J. Phys. Chem. Lett. 2015. V. 6. № 20. P. 4026–4031. https://doi.org/10.1021/acs.jpclett.5b01895
  7. Kim S.J., Koh H.J., Ren C.E., Kwon O., Maleski K., Cho S.Y., Anasori B., Kim C.K., Choi Y.K., Kim J., Gogotsi Y., Jung H.T. // ACS Nano. 2018. V. 12. № 2. P. 986–993. https://doi.org/10.1021/acsnano.7b07460
  8. Liu Y., Wang Y., Wu N., Han M., Liu W., Liu J., Zeng Z. // Nano-Micro Lett. 2023. V. 15. № 1. P. 240. https://doi.org/10.1007/s40820-023-01203-5
  9. Li G., Montazeri K., Ismail M.K., Barsoum M.W., Nabeet B., Titova L.V. // Adv. Photonics Res. 2020. V. 1. № 2. P. 2000084. http://dx.doi.org/10.1002/adpr.202000084
  10. Huang J., Li Z., Mao Y., Li Z. // Nano Select. 2021. V. 2. № 8. P. 1480–1508. http://dx.doi.org/10.1002/nano.202000309
  11. Солнцев К.А., Шусторович Е.М., Буслаев Ю.А. // Докл. АН. 2001. Т. 378. № 4. С. 492–499.
  12. Кузнецов К.Б., Стецовский А.П., Чернявский А.С., Солнцев К.А. // Перспективные материалы. 2008. № 1. Р. 56–59.
  13. Cui B., Sa R., Jayaseelan D.D., Inam F., Reece M.J., Lee W.E. // Acta Mater. 2012. V. 60. № 3. P. 1079–1092. https://doi.org/10.1016/j.actamat.2011.11.010
  14. Kovalev D.Yu., Luginina M.A., Sytchev A.E. // Russ. J. Non-Ferrous Met. 2017. V. 58. № 3. P. 303–307. https://doi.org/10.3103/S1067821217030087
  15. Львов Л.О., Ковалев Н.А., Кочанов Г.П., Рогова А.Н., Чернявский А.С., Гудилин Е.А., Солнцев К.А. Способ получения покрытий на основе MAX-фазы состава Ti2AlN на керамике из нитрида титана. Патент РФ № 2831290. 2024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).