Calcium-ion binding by polymeric alendronate derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Water-soluble phosphorus-containing polymers of various structures have been synthesized for the first time: a homopolymer of acryloyl alendronate, its copolymers with 4-acryloylmorpholine and 2-deoxy-2-methacrylamido-D-glucose, and a copolymer of N-vinylpyrrolidone with allyl alendronate. A comparative study of their ability to bind calcium ions has been conducted. It has been shown that for alendronate-containing polymers, the amount of Ca2+ bound by one phosphorus-containing group is 2 to 3 times higher than that of polyvinylphosphonic acid.

About the authors

T. N. Nekrasova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Author for correspondence.
Email: nazaro@hq.macro.ru

A. I. Fischer

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

O. V. Nazarova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

E. P. Salikova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

Yu. I. Zolotova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

I. I. Gavrilova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

A. V. Dobrodumov

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

M. A. Bezrukova

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

E. F. Panarin

NRC “Kurchatov Institute” – PNPI – IMC, 199004 Saint-Petersburg, Russian Federation

Email: nazaro@hq.macro.ru

References

  1. Bassi A., Gough J., Downes S. // J. Tissue Eng. Regen. Med. 2012. V. 6. P. 833–840. https://doi.org/10.1002/term.491
  2. Gemeinhart R.A., Bare C.M., Haasch R.T., Gemeinhart E.J. // J. Biomed. Mater. Res. 2006. V. 78A. P. 433–440. https://doi.org/10.1002/jbm.a.30788
  3. Dey R.E., Zhong X., Youle P.J., Wang Q.G., Wimpenny I., Downes S., Hoyland J.A., Watts D.C., Gough J.E., Budd P.M. // Macromolecules. 2016. V. 49. P. 2656–2662. https://doi.org/10.1021/acs.macromol.5b02594
  4. Xiao Z., Fu D., Zhang L., Fan W., Shen X., Q, X. // J. Orthop. Surg. Res. 2022. V. 17. P. 431. https://doi.org/10.1186/s13018-022-03330-y
  5. Fazil M., Baboota S., Sahn J.K., Ameeduzzafar, Ali J. // Drug Delivery. 2015. V. 22. P. 1–9. https://doi.org/10.3109/10717544.2013.870259
  6. Li A., Xu H., Yu P., Xing J., Ding C., Yan X., Xie J., Li J. // Eur. Polym. J. 2020. V. 141. P. 110091. https://doi.org/10.1016/j.eurpolymj.2020.110091
  7. Orlova N., Nikolajeva I., Pučkins A., Belyakov S., Kirilova E. // Molecules. 2021. V. 26. P. 2570. https://doi.org/10.3390/molecules26092570
  8. Nazarova O., Chesnokova E., Nekrasova T., Zolotova Yu., Dobrodumov A., Vlasova E., Fischer A., Bezrukova M., Panarin E. // Polymers. 2022. V. 14. P. 590. https://doi.org/10.3390/polym14030590
  9. Bingöl B., Meyer W.H., Wagner M., Wegner G. // Macromol. Rapid Commun. 2006. V. 27. P. 1719–1724. https://doi.org/10.1002/marc.200600513
  10. Gindele M.B., Malaszuk K.K., Peter C., Gebauer D. // Langmuir. 2022. V. 38. P. 14409–14421. https://doi.org/10.1021/acs.langmuir.2c01662

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

In the print version, the article was published under the DOI: 10.31857/S2686953525020035


Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).