Investigation of the ordering of Ba1–xLaxF2+x solid solutions during phase formation from a solution in a sodium nitrate melt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Matrices based on inorganic fluorides have garnered significant interest from researchers for the development of effective phosphors. In this study, fluorite-like phases of the composition Ba1–xLnxF2+x, with an LnF3 content of approximately 40 mol. % for Ln = La–Lu, were synthesized by crystallization of fluorides from a NaNO3 melt. It was observed that the by-product of the synthesis, BaF2, dissolves and is removed from the system during the washing of samples with water. A cubic solid solution with a fluorite structure was formed for rare earth elements within the cerium subgroup. Notably, sodium was incorporated into the samples with Ln = Gd–Lu. The formation of trigonal fluorite-like phases with the Ba4Ln3F17 structure occurred during synthesis only for lanthanoides with smaller ionic radii (Tm–Lu). For intermediate-sized rare earth ions (Gd–Ho), fluorite-like tetragonal phases were formed, exhibiting very weak superstructural reflections on the X-ray diffraction patterns. The resulting matrices have potential applications in the development of up-conversion luminophores and optical thermometers.

Full Text

Restricted Access

About the authors

P. P. Fedorov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: ppfedorov@yandex.ru
Russian Federation, 119991 Moscow

A. A. Alexandrov

Prokhorov General Physics Institute of the Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry

Email: ppfedorov@yandex.ru
Russian Federation, 119991 Moscow; 119991 Moscow

S. V. Kuznetsov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ppfedorov@yandex.ru
Russian Federation, 119991 Moscow

A. E. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry

Email: ppfedorov@yandex.ru
Russian Federation, 119991 Moscow

V. K. Ivanov

Kurnakov Institute of General and Inorganic Chemistry

Email: ppfedorov@yandex.ru

Corresponding Member of the RAS

Russian Federation, 119991 Moscow

References

  1. Vogt T. // Neues Jahrb. Mineral. 1914. V. 2. P. 9–15.
  2. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1976. 439 с. (Feynman R.P., Leighton R.B., Sands M. The Feynman lectures on physics. V. 1. Massachisetts, Palo Alto, London, Addison-Wesley, 1963.)
  3. Sobolev B.P. The Rare Earth Trifluorides. The high-temperature chemistry of the rare earth trifluorides. P.1. Barcelona. Barcelona: Institut d’Estudis Catalans, 2000. 521 p.
  4. Sobolev B.P. The Rare Earth Trifluorides. Introduction to materials science of multicomponent meltal fluoride crystals. P.2. Barcelona. Barcelona: Institut d’Estudis Catalans, 2001. 459 p.
  5. Greis O., Hashke J.M. Rare Earth Fluorides. In: Handbook on the physics and chemistry of rare earths. Gscheidner K.A., Eyring L.R. (eds). V. 5. Amsterdam, N.-Y., Oxford, 1982. Ch. 45, p. 387–460.
  6. Karbowiak M., Cichos J. // J. Alloys Compd. 2016. V. 673. P. 258–264. https://doi.org/10.1016/j.jallcom.2016.02.255
  7. Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. P. 145–150. https://doi.org/10.1016/0040-6031(85)85329-6
  8. Heise M., Scholz G., Düvel A., Heitjans P., Kemnitz E. // Solid State Sci. 2016. V. 60. P. 65–74. https://doi.org/10.1016/j.solidstatesciences.2016.08.004
  9. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Samarina K.S., Ermakov R.P., Osiko V.V. // Russ. J. Inorg. Chem. 2010. V. 55. № 4. P. 484–493. https://doi.org/10.1134/S0036023610040029.
  10. Alexandrov V.B., Otroshchenko L.P., Fykin L.E., Bydanov N.N., Sobolev B.P. // Sov. Phys. Crystallogr. 1989. V. 34. P. 896–899.
  11. Otroshchenko L.P., Muradyan L.A., Sobolev B.P., Sarin B.A., Alexandrov V.B. // Butll. Soc. Catalanes Fís. Quím. Mat. Tecnol. 1991. V. 12. P. 383–391.
  12. Sobolev B.P., Golubev A.M., Otroshchenko L.P., Molchanov V.N., Zakalyukin R.M., Ryzhova E.A., Herrero P. // Crystallogr. Rep. 2003. V. 48. P. 944–952.
  13. Sulyanova E.A., Karimov D.N., Sobolev B.P. // Crystals. 2021. V. 11. P. 447. https://doi.org/10.3390/cryst11040447
  14. Sorokin N.I., Sobolev B.P. // Phys. Solid State. 2019. V. 61. № 11. P. 2034–2040. https://doi.org/10.1134/S1063783419110350
  15. Fedorov P.P. // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S268–S291.
  16. Trömel M. // Z. Kristallogr. – Crystal. Mater. 1988. V. 183. № 1–4. P. 15–26. https://doi.org/10.1524/zkri.1988.183.14.15
  17. Третьяков Ю.Д. // Неорг. матер. 1985. Т. 21. № 5. С. 693–701.
  18. Sollich P. // Phys. Rev. E. 1998. V. 58. № 1. P. 738. https://doi.org/10.1103/PhysRevE.58.738
  19. Федоров П.П., Попов П.А. // Наносистемы: физика, химия, математика. 2013. Т. 4. № 1. С. 148–159.
  20. Kaminskii A.A. Laser crystals, their physics and properties. Springer-Verlag, Berlin, 1991. 457 p.
  21. Veselsky K., Loiko P., Eremeev K., Benayad A., Braud A., Sulc J., Jelinkova H., Camy P. // Opt. Lett. 2024. V. 49. P. 5631–5634. https://doi.org/10.1364/OL.532598
  22. Bitam A., Khiari S., Diaf M., Boubekri H., Boulma E., Bensalem C., Guerbous L., Jouart J.P. // Opt. Mater. 2018. V. 82. P. 104–109. https://doi.org/10.1016/j.optmat.2018.05.034
  23. Han H., Zhang Z., Weng X., Liu J., Guan X., Zhang K., Li G. // Rev. Sci. Instrum. 2013. V. 84. 073503. https://doi.org/10.1063/1.4812789
  24. Li X., Deng M., Shi Y., Qi X., Wang S., Lu Y., Du Y., Chen J. // Crystals. 2023. V. 13. P. 1334. https://doi.org/10.3390/cryst13091334
  25. Kawano N., Kato T., Nakauchi D., Takebuchi Y., Fukushima H., Jacobsohn L.G., Yanagida T. // J. Mater. Sci.: Mater. Electron. 2023. V. 34. 962. https://doi.org/10.1007/s10854-023-10343-8
  26. Kato T., Okada G., Fukuda K., Yanagida T. // Radiat. Meas. 2017. V. 106. P. 140–145. https://doi.org/10.1016/j.radmeas.2017.03.032
  27. Zhang F., Ouyang X., Peng X., Yin Z., Guo Y., Zhang J., Ouyang X., Liu B. // Appl. Phys. Lett. 2024. V. 125. № 14. 143503. https://doi.org/10.1063/5.0234568
  28. Su F.H., Chen W., Ding K., Li H. // J. Phys. Chem. A. 2008. V. 112. № 21. P. 4772–4777. https://doi.org/10.1021/jp8008332
  29. Pawlik N., Szpikowska-Sroka B., Pisarska J., Goryczka T., Pisarski W.A. // Materials. 2019. V. 12. № 22. P. 3735. https://doi.org/10.3390/ma12223735
  30. Rebrova N., Zdeb P., Lemanski K., Macalik B., Bezkrovnyi O., Deren P.J. // Inorg. Chem. 2024. V. 63. № 6. P. 3028–3036. https://doi.org/10.1021/acs.inorgchem.3c03821
  31. Milenkovic K., Dacanin Far L., Kuzman S., Antic Z., Circ A., Dramicanin M.D., Milicevic B. // Opt. Express. 2024. V. 32. № 23. P. 41632–41643. https://doi.org/10.1364/oe.542685
  32. Haritha P., Martín I.R., Dwaraka Viswanath C.S., Vijaya N., Venkata Krishnaiah K., Jayasankar C.K., Haranath D., Lavín V., Venkatramu V. // Opt. Mater. 2017. V. 70. P. 16–24. https://doi.org/10.1016/j.optmat.2017.05.002
  33. Vinogradova E.E., Vagapova-Hiiesalu E., Dolgov L., Liivand A., Orlovskii Yu.V. // J. Lumin. 2024. V. 269. P. 120439. https://doi.org/10.1016/j.jlumin.2024.120439
  34. Grzyb T., Balabhadra S., Przybylska D., Węcławiak M. // J. Alloys Compd. 2015. V. 649. P. 606–616. https://doi.org/10.1016/j.jallcom.2015.07.151
  35. Sorokin N.I., Sobolev B.P. // Crystallogr. Rep. 2007. V. 52. № 5. P. 842–863. https://doi.org/10.1134/S1063774507050148
  36. Rongeat C., Anji Reddy M., Witter R., Fichtner M. // J. Phys. Chem. C. 2013. V. 117. № 10. P. 4943–4950. https://doi.org/10.1021/jp3117825
  37. Mori K., Mineshige A., Saito T., Sugiura M., Ishikawa Y., Fujisaki F., Namba K., Kamiyama T., Otomo T., Abe T., Fukunaga T. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2873–2880. https://doi.org/10.1021/acsaem.9b02494
  38. Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2022. V. 386. 116052. https://doi.org/10.1016/j.ssi.2022.116052
  39. Лившиц А.И., Бузник В.М., Федоров П.П., Соболев Б.П. // Изв. АН СССР. Неорг. матер. 1982. Т. 18. № 1. С. 135–139.
  40. Мацулев А.Н., Бузник В.М., Лившиц А.И., Федоров П.П., Соболев Б.П. // ФТТ. 1988. Т. 30. № 12. С. 3554–3559.
  41. Мацулев А.И., Иванов Ю.Н., Лившиц А.И., Бузник В.М., Федоров П.П., Бучинская И.И., Соболев Б.П. // Ж. неорг. химии. 2000. Т. 45. № 2. С. 296–298.
  42. Zhao T., Hu L., Ren J. // J. Phys. Chem. C 2021. V. 125. № 48. P. 26901–26915. https://doi.org/10.1021/acs.jpcc.1c08154
  43. Preishuber-Pflugl F., Bottke P., Pregartner V., Bitschnau B., Wilkening M. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9580–9590. https://doi.org/10.1039/c4cp004229
  44. Fedorov P., Mayakova M., Alexandrov A., Voronov V., Kuznetsov S., Baranchikov A., Ivanov V. // Inorganics. 2018. V. 6. № 2. 38. https://doi.org/10.3390/inorganics6020038
  45. Fedorov P.P., Alexandrov A.A. // J. Fluorine Chem. 2019. V. 227. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374
  46. Kieser M., Greis O. // J. Less-Common Met. 1980. V. 71. № 1. P. 63–69. https://doi.org/10.1016/0022-5088(80)90101-0
  47. Mao Y., Jiang L., Ye R., Yang J., Hu S. // CrystEngComm. 2020. V. 22. P. 564–572. https://doi.org/10.1039/c9ce01687b
  48. Sobolev B.P., Tkachenko N.L. // J. Less-Common Metals. 1982. V. 85. P. 155–170. https://doi.org/10.1016/0022-5088(82)90067-4
  49. Maksimov B.A., Solans H., Dudka A.P., Genkina E.A., Badrdia-Font M., Buchinskaya I.I., Loshmanov A.A., Golubev A.M., Simonov V.I., Font-Altaba M., Sobolev B.P. // Crystallogr. Rep. 1996. V. 41. № 1. P. 50.
  50. Kieser M., Greis O. // Z. Anorg. Allg. Chem. 1980. V. 469. P. 164–171.
  51. Павлова Л.Н., Федоров П.П., Ольховая Л.А., Икрами Д.Д., Соболев Б.П. // Кристаллография. 1993. Т. 38. № 2. С. 164–169.
  52. Ostwald W. // Z. Phys. Chem. 1897. V. 22. P. 289–330.
  53. ten Wolde P.R., Frenkel D. // Phys. Chem. Chem. Phys. 1999. V. 1. P. 2191–2196. https://doi.org/10.1039/A809346F
  54. Cardew P.T. // Cryst. Growth Des. 2023. V. 23. I. 6. P. 3958–3969. https://doi.org/10.1021/acs.cgd.2c00141
  55. Fedorov P.P., Alexandrov A.A., Luginina A.A, Voronov V.V., Chernova E.V., Kuznetsov S.V. // J. Amer. Ceram. Soc. 2025. V. 108. № 2. e20152. https://doi.org/10.1111/jace.20152
  56. Alexandrov A.A., Petrova L.A., Pominova D.V., Romanishkin I.D., Tsygankova M.V., Kuznetsov S.V., Ivanov V.K., Fedorov P.P. // Appl. Sci. 2023. V. 13. № 18. 9999. https://doi.org/10.3390/app13189999

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 3. Compressive stress versus strain: ice (a); aerogel-reinforced ice nanocomposites made of non-crosslinked (b) and crosslinked (c) NMFC. Curves 1 and 2 in the graph (c) show the results of different measurements. All measurements were performed with at least five samples of each type.

Download (272KB)
3. Fig. 2. Diffraction patterns of sample F3 before and after washing.

Download (105KB)
4. Fig. 3. Diffraction patterns of samples F3, F4 and F7.

Download (163KB)
5. Fig. 4. SEM micrographs: sample F3 (Ln = Nd) in topographic contrast (using the secondary electron detector SE2) (a) and compositional contrast (using the backscattered electron detector BSE) (b) modes, sample F4 (Ln = Gd) in topographic contrast (c) and compositional contrast (d) modes, sample F7 (Ln = Tm) in topographic contrast (d) and compositional contrast (e) modes.

Download (807KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».