Ice reinforced with aerogels from nano/microfibrillated cellulose
- Autores: Buznik V.M.1, Postnova I.V.2, Khlebnikov O.N.2, Samodurov A.A.1, Rodaev V.V.1, Shchipunov Y.A.2
-
Afiliações:
- G.R. Derzhavin Tambov State University
- Institute of Chemistry, Far-East Department, Russian Academy of Sciences
- Edição: Volume 520, Nº 1 (2025)
- Páginas: 41-52
- Seção: PHYSICAL CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/294520
- DOI: https://doi.org/10.31857/S2686953525010058
- EDN: https://elibrary.ru/AWFUAA
- ID: 294520
Citar
Resumo
The fragility of ice limits its use as construction material, the road and crossings base in winter period in hard-to-reach northern regions. To strengthen it, various dispersed additives are introduced. However, the approaches proposed to date are labor-intensive, dispersions settle and can be poorly wetted. Here we suggest to strength ice using nano/microfibrillar cellulose aerogels. Their advantages over currently used materials include low specific gravity (0.1–0.001 g cm–3), large volume (up to 99 vol. %) of interconnected pores, hydrophilicity and biodegradability. The ice nanocomposites were formed in one step by simple impregnation of aerogels with water and subsequent freezing. The volume of the ice matrix included a homogeneous three-dimensional network of intertwined nano/microfibrils. The enhancement of the mechanical strength of ice by aerogels was due to a change in the mechanism of failure from brittle to plastic. Unlike ice, the composites did not undergo a breakdown into pieces after reaching yield stress. The three-dimensional network of nano/microfibrils of cellulose prevented the formation and development of macrocracks, which are associated with the rapid breaking of ice. Destruction occurred through a gradually increasing number of microcracks.
Palavras-chave
Texto integral

Sobre autores
V. Buznik
G.R. Derzhavin Tambov State University
Email: YAS@ich.dvo.ru
Academician of the RAS, Institute “Nanotechnology and Nanomaterials”
Rússia, 392000 TambovI. Postnova
Institute of Chemistry, Far-East Department, Russian Academy of Sciences
Email: YAS@ich.dvo.ru
Rússia, 690022 Vladivostok
O. Khlebnikov
Institute of Chemistry, Far-East Department, Russian Academy of Sciences
Email: YAS@ich.dvo.ru
Rússia, 690022 Vladivostok
A. Samodurov
G.R. Derzhavin Tambov State University
Email: YAS@ich.dvo.ru
Institute “Nanotechnology and Nanomaterials”
Rússia, 392000 TambovV. Rodaev
G.R. Derzhavin Tambov State University
Email: YAS@ich.dvo.ru
Institute “Nanotechnology and Nanomaterials”
Rússia, 392000 TambovYu. Shchipunov
Institute of Chemistry, Far-East Department, Russian Academy of Sciences
Autor responsável pela correspondência
Email: YAS@ich.dvo.ru
Corresponding Member of the RAS
Rússia, 690022 VladivostokBibliografia
- Rowley G. // Polar Record. 1938. V. 16. P. 109–116.
- Vasiliev N., Gladkov M.G. Ice composites: Mechanical properties and methods of creation. Proc. of the 17th Int. Conf. Port Ocean Engin. Arctic Conditions (POAC) (2003, June 16–19, Trondheim, Norway), 2003. P. 119–127.
- Barrette P.D. Overview of ice roads in Canada: Design, usage and climate change adaptation. Report OCRE-TR-2015-011. National Research Council Canada. Ottawa. 2015. https://doi.org/10.4224/40000400
- Barrette P. Reinforcement of ice covers for transportation: Beam and preliminary plate testing. Report NRS-OCRE-2019-TR-034. Ottawa. National Research Council Canada, 2020. 61 p.
- Thompson Towell K.L., Matthews E.M., Montmayeur O.M., Burch W.T., Elliott T.J., Melendy T.D., Reilly-Collette M.I., Murdza A., O'Connor D.T., Asenath-Smith E. // Cold Regions Sci. Technol. 2022. V. 198. e103508. https://doi.org/10.1016/j.coldregions. 2022.103508
- Goncharova G.Yu., Borzov S.S., Borschev G.V. // Food Systems. 2023. V. 6. № 2. P. 245–253. https://doi.org/10.21323/2618-9771-2023-6-2-245-254
- Pronk A., Wu Y., Luo P., Li Q., Liu X., Brands S., Block R., Dong Y. Design and construct of the 30.5 meter Flamenko Ice Tower. In: Proc. Of the IASS Simposium 2018 Creativity in structural design”. Mueller C., Adriaenssens S. (eds.) (2018, July 16–20, MIT, Boston, USA). 2018. P. 1–8.
- Pronk A.D.C., Verberne T.H.P., Kern J., Belis J. The calculation and construction of the highest ice dome-the Sagrada Familia in ice. Proc. Int. Soc. Flexible Formwork Symp. (2015, August 16–17, Amsterdam, The Netherlands), 2015. P.1–13.
- Pronk A., Luo P., Li Q., Sanders F.C., Overtoom M., Coar L., Fakhrzarei M., Ashrafi A. // Int. J. Space Struct. 2017. V. 36. № 1. P. 4–12. https://doi.org/10.1177/0956059921990996
- Kokawa T. // Int. J. Space Struct. 2021. V. 36. № 1. P. 26–36. https://doi.org/10.1177/0956059920981867
- Pronk A., Mergny E., Li Q. // Structures. 2022. V. 40. P. 725–747. https://doi.org/10.1016/j.istruc.2022.03.079
- Ice and Construction. State-of-the-Art report prepared by RILEM Technical Committee TC-118, Ice and Construction. Makkonen L. (ed.) London: E & FN Spon, 1994.
- Vasiliev N.K., Pronk A.D.C., Shatalina I.N., Janssen F.H.M.E., Houben R.W.G. // Cold Regions Sci. Technol. 2015. V. 115. P. 56–63. https://doi.org/10.1016/j.coldregions.2015.03.006
- Petrenko V.F., Whitworth R.W. Physics of ice. New York: Oxford University Press, 2002. 386 p.
- Schulson E.M., Duval P. Creep and fructure of ice. Cambridge University Press: Cambridge, 2009. https://doi.org/10.1017/CBO9780511581397
- Jordaan I. Mechanics of ice failure. An engineering analysis. Cambridge University Press: Cambridge, 2023. https://doi.org/10.1017/9781108674454
- Perutz M.F. // J. Glaciology. 1948. V. 3. P. 95–104. https://doi.org/10.3189/S0022143000007796
- Coble R.L., Kingery W.D. Ice reinforcement. In: Ice and snow: Properties, processes, and applications. Kingery W.D. (ed.) MIT Press. Cambridge, Mass. 1963. P. 130–148.
- Fransson L., Elfgren L. Field investigation of load-curvature characteristics of reinforced ice. Proc. of POLARTECH 86 Conference, VTT (1986, Helsinki, Finland). V. 1. 1986. P. 175–196.
- Nixon W.A., Smith R.A. // Cold Regions Sci. Technol. 1987. V. 14. № 2. P. 139–145. https://doi.org/10.1016/0165-232X(87)90029-2
- Nuzhnyi G.A., Cherepanin R.N., Buznik V.M., Grinevich D.V., Landik D.N. // Inorg. Mater. Appl. Res. 2020. V. 11. № 1. P. 103–108. https://doi.org/10.1134/S207511332001027X
- Buznik V.M., Goncharova G.Yu., Nuzhnyi G.A., Razomasov N.D., Cherepanin R.N. // Inorg. Mater. Appl. Res. 2019. V. 10. № 4. P. 786–793. https://doi.org/10.1134/S2075113319040087
- Сыромятникова А.С., Федорова Л.К. // Арктика: экология и экономика. 2022. Т. 12. № 2. С. 281–287. https://doi.org/10.25283/2223-4594-2022-2-281-287
- Lou X., Wu Y. // Cold Regions Sci. Technol. 2021. V. 192. 103381. https://doi.org/10.1016/j.coldregions.2021.103381
- Golovin Yu.I., Rodaev V.V., Samodurov A.A., Tyurin A.I., Golovin D.Yu., Vasyukov V.M., Razlivalova S.S., Buznik V.M. // Nanobiotechnol. Rep. 2023. V. 18. № 3. P. 371–383. https://doi.org/10.1134/S2635167623700258
- Bosnjak E., Coko N.B., Jurcevic M., Klarin B., Nizetic S. // Arch. Thermodyn. 2023. V. 44. № 3. P. 269–300. https://doi.org/10.24425/ather.2023.147547
- Yasui M., Arakawa M. Mechanical strength and flow properties of ice-silicate mixture depending on the silicate contents and the silicate particle sizes. In: Proc. of the 11th International conference on the physics and chemistry of ice. Kuhs W.F. (ed.). (2006, July 23–28, Bremenhafen, Germany). RSC Publishing, Cambridge, 2007. P. 649–657.
- Miedaner M.M., Huthwelker T., Enzmann F., Kersten M., Stampanoni M., Ammann M. X-Ray tomographic characterization of impurities in polycrystalline ice. In: Proc. of the 11th International conference on the physics and chemistry of ice. Kuhs W.F. (ed.). (2006, July 23–28, Bremenhafen, Germany). RSC Publishing, Cambridge, 2007. P. 399–407.
- Buznik V.M., Goncharova G.Yu., Grinevich D.V., Nuzhny G.A., Razomasov N.D., Turalin D.O. // Cold Regions Sci. Technol. 2022. V. 196. e103490. https://doi.org/10.1016/j.coldregions.2022.103490
- Vasiliev N.K. // Cold Regions Sci. Technol. 1993. V. 21. № 2. P. 195–199. https://doi.org/10.1016/0165-232X(93)90007-U
- Karpushko M.O., Bartolomei I.L., Karpushko E.N., Zhidelev A.V., Trapeznikov A.A. // Materi. Sci. Forum. 2020. V. 992. № 2. 118–123. https://doi.org/10.4028/www.scientific.net/MSF.992.118
- Tahmoorian F., Nemati S., Soleimani A. // Eng. Solid Mechanics. 2020. V. 8. № 1. P. 49–62. https://doi.org/10.5267/j.esm.2019.8.005
- Li J.H., Wei Z., Wu C. // Mater. Design. 2015. V. 67. № 1. P. 464–468. https://doi.org/10.1016/j.matdes.2014.10.040
- Cruz P.J.S., Belis J. Compressive strength of ice and cellulose-ice composite. In: Structures and architecture: Beyond their limits. Crus P.J.S. (ed.) Taylor & Francis, London, 2016. P. 348–355.
- Abhishek A.A.B., Yogesh G., Zope M.T. // J. Emerging Technol. Innovative Res. 2019. V. 6. № 2. P. 53–56. http://www.jetir.org/papers/JETIRAE06011.pdf
- Pronk A., Mistur M., Li Q., Liu X., Blok R., Liu R., Wu Y., Luo P., Dong Y. // Structures. 2019. V. 18. P. 117–127. https://doi.org/10.1016/j.istruc.2019.01.020
- Mayer D. Surfaces, interfaces, and colloids: Principles and applications. 2nd edn. New York: Wiley-VCH, 1999. 528 p.
- Klemm D., Cranston E.D., Fischer D., Gama M., Kedzior S.A., Kralisch D., Kramer F., Kondo T., Lindström T., Nietzsche S., Petzold-Welcke K., Rauchfuss F. // Mater. Today. 2018. V. 21. № 7. P. 720–748. https://doi.org/10.1016/j.mattod.2018.02.001
- Thomas B., Raj M.C., Athira K.B., Rubiyah M.H., Joy J., Moores A., Drisko G.L., Sanchez C. // Chem. Rev. 2018. V. 118. № 24. P. 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627
- Jarvis M.С. // Cellulose. 2023. V. 30. № 2. P. 667–687. https://doi.org/10.1007/s10570-022-04954-3
- Li T., Zhao Y., Zhong Q., Wu T. // Biomacromolecules. 2019. V. 20. № 4. P. 1667–1674. https://doi.org/10.1021/acs.biomac.9b00027
- Li T., Zhong Q., Zhao B., Lenaghan S., Wang S.,Wu T. // Carbohyd. Polym. 2020. V. 234. e115863. https://doi.org/10.1016/j.carbpol.2020.115863
- Golovin Yu.I., Samodurov A.A., Tyurin A.I., Rodaev V.V., Golovin D.Yu., Vasyukov V.M., Razlivalova S.S., Buznik V.M. // J. Composite Sci. 2023. V. 7. e304. https://doi.org/10.3390/jcs7080304
- Balalakshmi C., Yoganathan P. R. S., Tharini K., Anand A.V., Murugaesan A., Jaabir M., Sivakamavalli J. Nanocelluloses toxicological and environmental impacts. In: Handbook of nanocelluloses. Classification, properties, fabrication, and emerging applications. Barhoum A. (ed.). Springer, Cham, 2022. P. 35–49. https://doi.org/10.1007/978-3-030-89621-8_6
- Ventura C., Marques C., Cadete J., Vilar M., Pedrosa J.F.S., Pinto F., Fernandes S.N., da Rosa R.R., Godinho M.H., Ferreira P.J.T., Louro H., Silva M.J. // J. Xenobiotics. 2022. V. 12. № 2. P. 91–108. https://doi.org/10.3390/jox12020009
- Nechyporchuk O., Belgacem M.N., Bras J. // Ind. Crops Products. 2016. V. 93. № 1. P. 2–25. https://doi.org/10.1016/j.indcrop.2016.02.016
- Tang Y.M., Yang H.,Vignolini S. // Adv. Sustainable Syst. 2022. V. 6. e2100100. https://doi.org/10.1002/adsu.202100100
- Khlebnikov O.N., Silantev V.E., Shchipunov Yu.A. // Mendeleev Commun. 2018. V. 28. № 2. P. 214–215. https://doi.org/10.1016/j.mencom.2018.03.036
- Postnova I., Khlebnikov O., Silant'ev V., Shchipunov Yu. // Pure Appl. Chem. 2018. V. 90. № 11. P. 1755–1771. https://doi.org/10.1515/pac-2018-0706
- Verdolotti L., Stanzione M., Khlebnikov O., Silant'ev V., Postnova I., Lavorgna M., Shchipunov Y. // Macromol. Chem. Phys. 2019. V. 220. e1800372. https://doi.org/10.1002/macp.201800372
- Хлебников O.Н., Постнова И.В., Chen L.J., Щипунов Ю.A. // Коллоид. журн. 2020. Т. 82. № 4. С. 488–500. https://doi.org/10.31857/S0023291220040047
- Kistler S.S. // J. Phys. Chem. 1931. V. 36. № 1. P. 52–64. https://doi.org/10.1021/j150331a003
- Zhang W., Zhang Y., Lu C., Deng Y. // J. Mater. Chem. 2012. V. 22. № 23. P. 11642–11650. https://doi.org/10.1039/C2JM30688C
- Kim C.H., Youn H.J., Lee H.L. // Cellulose. 2015. V. 22. № 6. P. 3715–3724. https://doi.org/10.1007/s10570-015-0745-5
- Sun Y., Chu Y.L., Wu W.B., Xiao H.N. // Carbohyd. Polym. 2021. V. 255. e117489. https://doi.org/10.1016/j.carbpol.2020.117489
- Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W. Comprehensive cellulose chemistry. Fundamentals and analytical methods. Weinheim: Wiley-VCH, 1998.
- Nimz H.H., Schmitt U., Schwab E., Wittmann O., Wolf F. Wood. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH: Heidelberg, 2012. P. 453–505.
- Patt R., Kordsachia O., Suttinger R., Ohtani Y., Hoesch J.F., Ehrler P., Eichinger R., Holik H., Hamm U., Rohmann M. E., Mummenhoff P., Petermann E., Miller R.F., Frank D., Wilken R., Baumgarten H.L., Rentrop G.-H. Paper and pulp. In: Kirk-Othmer encyclopedia of chemical technology. Wiley-VCH: Heidelberg, 2007. P. 1–157.
- Скатова A.В., Сарин С.A., Щипунов Ю.A. // Коллоид. журн. 2020. Т. 82. № 3. С. 377–385. https://doi.org/10.31857/S002329122003012X
- Shchipunov Yu.A., Supolova Y.I. Procedure for biopolymer hydrogel production. Patent RU 2743941. 2020.
- Postnova I., Sarin S., Zinchenko A., Shchipunov Yu. // ACS Appl. Polym. Mater. 2022. V. 4. № 1. P. 663–671. https://doi.org/10.1021/acsapm.1c01585
- Щипунов Ю.A., Силантьев В.E., Постнова И.В. // Коллоид. журн. 2012. Т. 74. № 5. С. 654–662. https://doi.org/10.1134/S1061933X12050092
- De France K.J., Hoare T., Cranston E.D. // Chem. Mater. 2017. V. 29. № 11. P. 4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531
- Chen Y.M., Zhang L., Yang Y., Pang B., Xu W.H., Duan G.G., Jiang S.H., Zhang K. // Adv. Mater. 2021. V. 33. e2005569. https://doi.org/10.1002/adma.202005569
- Zhang H. Ice templating and freeze-drying for porous materials and their applications. Wiley-VCH: Weinheim, 2018. 376 p.
- Baetens R., Jelle B.P., Gustavsen A. // Energy Buildings. 2011. V. 43. № 4. P. 761–769. https://doi.org/10.1016/j.enbuild.2010.12.012
- Maleki H., Durães L., Portugal A. // J. Non-Cryst. Solids. 2014. V. 385. P. 55–74. https://doi.org/10.1016/j.jnoncrysol.2013.10.017
- Schulson E.M. // Acta Metall. Mater. 1990. V. 38. № 10. P. 1963–1976. https://doi.org/10.1016/0956-7151(90)90308-4
- Callister W.D. Materials science and engineering: An Introduction. Wiley: York, PA, 2007.
- Chen W.S., Yu H.P., Li Q., Liu Y.X., Li J. // Soft Matter. 2011. V. 7. № 21. P. 10360–10368. https://doi.org/10.1039/c1sm06179h
- Ratke L. Monoliths and fibrous cellulose aerogels. In: Aerogels handbook. Aegerter M.A., Leventis N., Koebel M.M. (eds.) New York, Springer, 2011. P. 173–190. https://doi.org/10.1007/978-1-4419-7589-8_9
- Habibi Y. // Chem. Soc. Rev. 2014. V. 43. № 5. P. 1519–1542. https://doi.org/10.1039/c3cs60204d
- Rol F., Belgacem M.N., Gandini A., Bras J. // Prog. Polym. Sci. 2019. V. 88. № 241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002
- Patil T.V., Patel D.K., Dutta S.D., Ganguly K., Santra T.S., Lim K.-T. // Bioactive Mater. 2022. V. 9. № 1. P. 566–589. https://doi.org/10.1016/j.bioactmat.2021.07.006
- Heinze T., Liebert T. // Prog. Polym. Sci. 2001. V. 26. № 11. P. 1689–1762. https://doi.org/10.1016/S0079-6700(01)00022-3
- Gericke M., Trygg J., Fardim P. // Chem. Rev. 2013. V. 113. № 7. P. 4812–4836. https://doi.org/10.1021/cr300242j
- Yang Y., Lu Y.-T., Zeng K., Heinze T., Groth T., Zhang K. // Adv. Mater. 2020. V. 33. № 28. e2000717. https://doi.org/10.1002/adma.202000717
- Boury B., Plumejeau S. // Green Chem. 2015. V. 17. № 1. P. 72–88. https://doi.org/10.1039/c4gc00957f
- Shchipunov Yu., Postnova I. // Adv. Func. Mater. 2018. V. 28. № 27. e1705042. https://doi.org/10.1002/adfm.201705042
- Xue Y., Mou Z., Xiao H. // Nanoscale. 2017. V. 9. № 39. P. 14758–14781. https://doi.org/10.1039/c7nr04994c
- Heldt H.-W., Piechulla B. Plant Biochemistry. London: Academic Press, 2011.
Arquivos suplementares
