Selective hydrogenation of carvone on Pd/Al2O3 under mild reaction conditions
- Autores: Osadchaya T.Y.1, Afineevskii A.V.1, Prozorov D.A.1, Cardenas-Lizana F.2
-
Afiliações:
- Ivanovo State University of Chemistry and Technology
- Heriot-Watt University
- Edição: Volume 520, Nº 1 (2025)
- Páginas: 12-22
- Seção: CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/294508
- DOI: https://doi.org/10.31857/S2686953525010026
- EDN: https://elibrary.ru/AWUTZT
- ID: 294508
Citar
Resumo
Liquid-phase hydrogenation of carvone to carveol using Pd/Al2O3 catalyst under mild reaction conditions was studied. Carvone having three different functional groups, is a complex object for selective hydrogenation, since endo- and exo- >C=C< bonds and carbonyl group have different reactivity. The aim of the study was to increase the selectivity for carveol, an important industrial product in the food, perfumery and pharmaceutical industries. Optimum conditions for carvone hydrogenation to carveol were established: toluene solvent, Pd/Al2O3 catalyst and temperatures ≥323 K. It was shown that the selectivity for carveol under mild conditions reaches 20%. The results demonstrate the potential of using Pd/Al2O3 for efficient and selective hydrogenation of carvone in industry. This study can form the basis for the development of new technologies for the production of carveol with high selectivity and yield, which is important for improving the efficiency and sustainability of chemical processes in various industries.
Texto integral

Sobre autores
T. Osadchaya
Ivanovo State University of Chemistry and Technology
Autor responsável pela correspondência
Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo
A. Afineevskii
Ivanovo State University of Chemistry and Technology
Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo
D. Prozorov
Ivanovo State University of Chemistry and Technology
Email: osadchayatyu@gmail.com
Rússia, 153000 Ivanovo
F. Cardenas-Lizana
Heriot-Watt University
Email: osadchayatyu@gmail.com
Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences (EPS)
Reino Unido da Grã-Bretanha e Irlanda do Norte, Edinburgh EH14 4ASBibliografia
- Bhatia S.P., McGinty D., Letizia C.S., Api A.M. // Food Chem. Toxicol. 2008. V. 46. № 11. P. S85–S87. https://doi.org/10.1016/j.fct.2008.06.074
- Duetz W.A., Fjällman A.H., Ren S., Jourdat C., Witholt B. // Appl. Environ. Microbiol. 2001. V. 67. № 6. P. 2829–2832. https://doi.org/10.1128/AEM.67.6.2829-2832.2001
- Costa V.V., da Silva Rocha K.A., de Sousa L.F., Robles-Dutenhefner P.A., Gusevskaya E.V. // J. Mol. Cat. A: Chem. 2011. V. 345. Р. 69–74. https://doi.org/10.1016/j.molcata.2011.05.020
- de Miguel S.R, Román-Mart´ınez M.C., Cazorla-Amorós D., Jablonski E.L., Scelza O.A. // Cat. Today. 2001. V. 66. № 2–4. P. 289–295. https://doi.org/10.1016/S0920-5861(00)00657-X
- Chapman H.A., Herbal K., Motherwell W.B. // Synlett. 2010. V. 4. № 3. P. 595–598. https://doi.org/10.1055/s-0029-1219373
- Stekrova M., Kumar N., Mäki-Arvela P., Ardashov O.V., Volcho K.P., Salakhutdinov N.F., Murzin D.Yu. // Materials. 2013. V. 6. № 5. P. 2103–2118. https://doi.org/10.3390/ma6052103
- Anikeev V.I., Sivcev V.P., Il'ina I.V., Korchagina D.V., Statsenko O.B., Volcho K.P., Salakhutdinov N.F. // Russ. J. Phys. Chem. A. 2013. V. 87. № 3. P. 382–387. https://doi.org/10.7868/S0044453713030023
- Black P.J. Catalytic electronic activation: The addition of nucleophiles to an allylic alcohol. Doctoral thesis, United Kingdom, University of Bath, 2002. 192 p.
- Bicas J.L., Dionísio A.P., Pastore G.M. // Chem. Rev. 2009. V. 109. № 9. P. 4518–4531. https://doi.org/10.1021/cr800190y
- Fahlbusch K.-G., Hammerschmidt F.-J., Panten J., Pickenhagen W., Schatkowski D., Bauer K., Garbe D., Surburg H. Flavors and fragrances. In: Ullmann's encyclopedia of industrial chemistry. V. 15. Elvers B., Hawkins S., Russey W. (eds.). Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2003. P. 73–198. https://doi.org/10.1002/14356007.a11_141
- Demidova Y.S., Suslov E.V., Simakova O.A., Volcho K.P., Salakhutdinov N.F., Simakova I.L., Murzin D.Y. // J. Mol. Catal. A: Chem. 2016. V. 420. P. 142–148. https://doi.org/10.1016/j.molcata.2016.04.013
- Schmidt E., Wanner J. Adulteration of essential oils. In: Handbook of essential oils: Science, technology and application. 3rd Edn. Can Baser K.H., Buchbauer G. (eds.). USA, Boca Raton, CRC Press, 2020. P. 543–580.
- Melo C.I., Bogel-Łukasik R., Bogel-Łukasik E. // J. Supercrit. Fluids. 2012. V. 61. P. 191–198. https://doi.org/10.1016/j.supflu.2011.10.005
- Montero G.E.R., Stassi J.P., de Miguel S.R., Zgolicz P.D. // React. Chem. Eng. 2023. V. 8. № 12. Р. 3133–3149. https://doi.org/
- Samarov A.A., Vostrikov S.V., Glotov A.P., Verevkin S.P. // Chemistry. 2024. V. 6. № 4. P. 706–722. https://doi.org/10.3390/chemistry6040042
- Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. V. 33. Barbaro P., Liguori F. (eds.). USA: Boston, Springer, 2010. 470 p. https://doi.org/10.1007/978-90-481-3696-4
- Benavente P., Cárdenas-Lizana F., Keane M.A. // Cat. Comm. 2017. V. 96. P. 37–40. https://doi.org/10.1016/j.catcom.2017.03.026
- Malkar R.S., Yadav G.D. // Curr. Catal. 2020. V. 9. № 1. P. 32–58. https://doi.org/10.2174/2211544708666190613163523
- Vilella I.M.J., de Miguel S.R., Scelza O.A. // J. Mol. Cat. A: Chem. 2008. V. 284. № 1–2. P. 161–171. https://doi.org/10.1016/j.molcata.2008.01.017
- Gilbert L., Mercier C. Solvent effects in heterogeneous catalysis: Application to the synthesis of fine chemicals. In: Studies in surface science and catalysis. V. 78. Guisnet M. (ed.). Amsterdam, Elsevier, 1993. Р. 51. https://doi.org/10.1016/S0167-2991(08)63303-0
- Wehrli J.T., Baiker A., Monti D.M., Blaser H.U., Jalett H.P. // J. Mol. Cat. 1989. V. 57. № 2. P. 245–257. https://doi.org/10.1016/0304-5102(89)80234-2
- Augustine R.L. Advances in catalysis. V. 25. Eley D.D., Selwood P.W., Weisz P.B. (eds.). New York, Academic Press, 1976. P. 56.
- Blaser H.U., Jalett H.P., Wiehl J. // J. Mol. Catal. 1991. V. 68. № 2. P. 215–222. https://doi.org/10.1016/0304-5102(91)80076-F
- Bertero N.M., Trasarti A.F., Apesteguía C.R., Marchi A. // J. App. Catal. A: Gen. 2011. V. 394. № 1–2. P. 228–238. https://doi.org/10.1016/j.apcata.2011.01.003
- Li M., Wang X., Cárdenas-Lizana F., Keane M.A. // Catal. Today. 2017. V. 279. № 1. P. 19–28. https://doi.org/10.1016/j.cattod.2016.06.030
- Cárdenas-Lizana F., Lamey D., Gómez-Quero S., Perret N., Kiwi-Minsker L., Keane M.A. // Catal. Today. 2011. V. 173. № l. P. 53–61. https://doi.org/10.1016/j.cattod.2011.03.084
- Cárdenas-Lizana F., Hao Y., Crespo-Quesada M., Yuranov I., Wang X., Keane M.A., Kiwi-Minsker L. // ACS Catal. 2013. V. 3. № 6. P. 1386–1396. https://doi.org/10.1021/cs400194
- Petrier C., Luche J.-L. // Tetrahedron lett. 1987. V. 28. № 21. P. 2351–2352. https://doi.org/10.1016/S0040-4039(00)96120-3
- Li M., Hao Y., Cárdenas-Lizana F., Yiu H.H.P., Keane M.A. // Top. Catal. 2015. V. 58. P. 149–158. https://doi.org/10.1007/s11244-014-0354-9
- Molnar A., Sarkany A., Varga M. // J. Mol. Catal. A: Chem. 2001. V. 173. № 1. P. 185–221. https://doi.org/10.1016/S1381-1169(01)00150-9
- Shorthouse L.J., Roberts A.J., Raval R. // Surf. Sci. 2001. V. 480. № 1–2. P. 37–46. https://doi.org/10.1016/S0039-6028(01)00991-8
- Brunner E. // J. Chem. Eng. Data. 1985. V. 30. № 3. P. 269–273. https://doi.org/10.1021/je00041a010
- Saboktakin M.R., Tabatabaie R.M., Maharramov A., Ramazanov M.A. // Synth. Comm. 2011. V. 41. № 10. P. 1455–1463. https://doi.org/10.1080/00397911.2010.486510
Arquivos suplementares
