Transformation of aromatic hydrocarbons in the process of hydrogenation of a concentrated mixture to produce clean fuels
- Authors: Каlenchuk А.N.1,2, Tolkachev N.N.2,3, Lischiner I.I.3, Malova O.V.3, Kustov L.M.1,2
-
Affiliations:
- Lomonosov Moscow State University
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Joint Institute for High Temperatures, Russian Academy of Sciences
- Issue: Vol 515, No 1 (2024)
- Pages: 45-53
- Section: PHYSICAL CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/259118
- DOI: https://doi.org/10.31857/S2686953524020055
- EDN: https://elibrary.ru/zrwziu
- ID: 259118
Cite item
Abstract
The process of hydrogenation of a modeling mixture of aromatic hydrocarbons was studied in order to develop regulated approaches for producing environmentally friendly fuels. The process was carried out on a trimetallic PdNiCr catalyst deposited on aluminum oxide. The optimal conditions for carrying out the reaction were determined. The influence of the structure of substituted substrates on the formation of by-products of the ring-opening reaction has been established.
Keywords
Full Text

About the authors
А. N. Каlenchuk
Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991, Moscow; 119991, MoscowN. N. Tolkachev
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences
Email: lmkustov@mail.ru
Russian Federation, 119991, Moscow; 125412, Moscow
I. I. Lischiner
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: lmkustov@mail.ru
Russian Federation, 125412, Moscow
O. V. Malova
Joint Institute for High Temperatures, Russian Academy of Sciences
Email: lmkustov@mail.ru
Russian Federation, 125412, Moscow
L. M. Kustov
Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991, Moscow; 119991, MoscowReferences
- Rana M.S., Samano V., Ancheyta J., Diaz J.A. // Fuel. 2007. V. 86. P. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004
- Makarfi Y.I., Yakimova M.S., Lermontov A.S., Erofeev V.I., Koval L.M., Tretiyakov V.F. // Chem. Eng. J. 2009. V. 154. P. 396–400. https://doi.org/10.1016/j.cej.2009.06.001
- Hamieh S., Canaff C., Tayeb K.B., Tarighi M., Maury S., Vezin H., Pouilloux Y., Pinard L. // Eur. Phys. J. Special Topics. 2015. V. 224. P. 1817–1830. https://doi.org/10.1140/EPJST/E2015-02501-1
- Zaidi H.A., Pant K.K. // Catalysis Today. 2004. V. 96. P. 155–160. https://doi.org/10.1016/J.CATTOD.2004.06.123
- Song С., Ma X. // Appl. Catal. B: Env. 2003. V. 41. P. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6
- Stanislaus A., Cooper B.H. // Catal. Rev.-Sci. Eng. 1994. V. 36. P. 75–123. https://doi.org/10.1080/01614949408013921
- Shukla A.A., Gosavi P.V., Pande J.V., Kumar V.P., Chary K.V.R., Biniwale R.B. // Int. J. Hydrogen Energy. 2010. V. 35. P. 4020–4026. https://doi.org/10.1016/j.ijhydene.2010.02.014
- Lazaro M.P., Bordeje E.G., Sebastian D., Lazaro M.J., Moliner R. // Catal. Today. 2006. V. 138. P. 203–209. https://doi.org/10.1016/j.cattod.2008.05.011
- Maria G., Marin A., Wyss C., Muller S., Newson E. // Chem. Eng. Sci. 1996. V. 51. P. 2891–2896. https://doi.org/10.1016/0009-2509(96)00170-4
- Biniwale R.B., Rayalu S., Devotta S., Ichikawa M. // Int. J. Hydrogen Energy. 2008. V. 33. P. 360–365. https://doi.org/10.1016/j.ijhydene.2007.07.028
- Bourane A., Elanany M., Pham T.V., Katikaneni S.P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 23075–23091. https://doi.org/10.1016/j.ijhydene.2016.07.167
- Pawelec B., Mariscal R., Navarro R.M., Bokhorst S., Rojasa S., Fierro J.L.G. // Appl. Catal. A: Gen. 2002. V. 225. P. 223–237. https://doi.org/10.1016/S0926-860X(01)00868-7
- Abu-Reziq R., Avnir D., Miloslavski I., Schumann H., Blum J. // J.Mol. Catal. A: Chem. 2002. V. 185. P. 179–185. https://doi.org/10.1016/s1381-1169(02)00012-2
- Park I.S., Kwon M.S., Kang K.Y., Lee J.S., Park J. // Adv. Synth. Catal. 2007. V. 349. P. 2039–2047. https://doi.org/10.1002/adsc.200600651
- Jorchik H., Preuster P., Bosmann A., Wasserscheid P. // Sustainable Energy & Fuels. 2021. V. 5. P. 1311–1346. https://doi.org/10.1039/D0SE01369B
- Cooper B.H., Donnis B.B.L. // Appl. Catal. A. 1996. V. 137. P. 203–223. https://doi.org/10.1016/0926-860X(95)00258-8
- Nishimura S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. N.Y.: Johnwilley & Sons, Inc., 2001. pp. 477–478. ISBN 0-471-39698-2
- Kaufmann T., Kaldor A., Stuntz G., Kerby M., Ansell L. // Catal. Today. 2000. V. 62. P. 77–90. https://doi.org/10.1016/S0920-5861(00)00410-7
- Santana R., Do P., Santikunaporn M., Alvarez W., Taylor J., Sughrue E., Resasco D. // Fuel. 2006. V. 85. P. 643−656. http://dx.doi.org/10.1016/j.fuel.2005.08.028
- Kustov L.M., Kustov A.L. // Rus. J. Phys. Chem. A. 2020. Vl. 94. P. 317−322. https://doi.org/10.1007/s10562-018-2325-4
- McVicker G., Daage M., Touvelle,M., Hudson C., Klein D., Baird W., Cook B., Chen J.G., Hantzer S.S., Vaughan D., Ellis E.S., Feeley O.C. // J. Catal. 2002. V. 210. P. 137–148. https://doi.org/10.1006/JCAT.2002.3685
- Sachtler W.M.H., Stakheev A.Yu. // Catal. Today. 1992. V. 12. P. 332–283. https://doi.org/10.1016/0920-5861(92)85046-O
- Kustov L.M., Kalenchuk A.N. // Metals. 2022. V. 12. P. 2002–2019. https://doi.org/10.3390/met12122002
- Kustov L.M., Kalenchuk A.N. // Catalysts. 2022. V. 12. P. 1506–1514. https://doi.org/10.3390/catal12121506
- Звонкова З.В. // Усп. химии. 1977. Т. 46. С. 907–927. https://doi.org/10.1070/RC1977v046n05ABEH002148
- Клар Э. Полициклические углеводороды. Т. 2. Москва: Химия, 1971. 456 с. ISSN: 2949-2076
- Rogers D.W., McLafferty, F.J. // J. Org. Chem. 2001. V. 66. P. 1157–1162. https://doi.org/10.1021/jo001242k
- Finashina E.D., Avaev V.I., Tkachenko O.P., Greish A.A., Davshan N.A., Kuperman A., Caro J., Kustov L.M. // Ind. & Eng. Chem. Res. 2021. V. 60. P. 7802–7815. https://doi.org/10.1021/acs.iecr.1c00538
- Stakheev A.Yu., Kustov L.M. // Appl. Catal. A: Gen. 1999. V. 188. P. 3–35. https://doi.org/10.1016/S0926-860X(99)00232-X
- Rodriguez J.A., Goodman D.W. // Science. 1992. V. 257.P. 897–903. https://doi.org/10.1126/science.257.5072.897
- Kubicka H., Okal J. // Catal. Lett. 1994. V. 25. P. 157–161. https://doi.org/10.1007/bf00815425
- Kubička H., Kumar N., Venalainen T., Kahru H., Kubickova I., Osterholm H., Murzin D. // J. Phys. Chem. B. 2006. V. 110. P. 4937–4942. https://doi.org/10.1021/jp055754k
- Kubička H., Kumar N., Maki-Arvela P., Venalainen T., Tiitta M., Salmi T., Murzin D. // Stud. Surf. Sci. Catal. 2005. V. 158. P. 1669–1675. https://doi.org/10.1016/S0167-2991(05)80524-5
- Davydov A.A. // Molecular Spectroscopy of Oxide Catalyst Surfaces. Wiley Interscience Publ. 2003. 90 p. ISBN: 978-0-471-98731-4
- Kustov L.M., Tarasov A.L., Tkachenko O.P. // Catal. Lett. 2018. V. 148. P. 1472–1477. https://doi.org/10.1007/s10562-018-2325-4
- Sotoodeh F., Zhao L., Smith K.J. // Appl. Catal. A: Gen. 2009. V. 362. P. 155–162. https://doi.org/10.1016/j.apcata.2009.04.039
Supplementary files
