Легированные наночастицы кремния. Обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Легированные наночастицы кремния сочетают в себе доступность и биосовместимость материала с широким разнообразием функциональных свойств. В обзоре рассмотрены способы получения легированных наночастиц кремния, основными из которых являются химическое осаждение из газовой фазы, отжиг нестехиометрических соединений кремния, диффузионное легирование. Собраны данные о достигнутых содержаниях примесей; для важного частного случая фосфора показано, что избыточная относительно растворимости в кремниевых кристаллах примесь не проявляет электрической активности. Приведены закономерности в распределении примесей внутри наночастиц, исследованные в последнее десятилетие с помощью информативных методов атомно-зондовой томографии и твердотельного ЯМР. Рассмотрены перспективные оптические и электрофизические свойства легированных наночастиц кремния, на примере локализованного плазмонного резонанса показана существенная роль положения примесей в дизайне материала с искомыми свойствами.

Полный текст

Доступ закрыт

Об авторах

С. С. Бубенов

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: s.bubenov@gmail.com

Химический факультет

Россия, 119991 Москва

С. Г. Дорофеев

Московский государственный университет имени М.В. Ломоносова

Email: s.bubenov@gmail.com

Химический факультет

Россия, 119991 Москва

Список литературы

  1. Duan H., Wang J., Liu L., Huang Q., Li. J. // Prog. Photovolt: Res. Appl. 2016. V. 24. P. 83–93. https://doi.org/10.1002/pip.2654
  2. Tarascon J.-M. // Nature Chem. 2010. V. 2. P. 510–510. https://doi.org/10.1038/nchem.680
  3. Canham L.T. // Appl. Phys. Lett. 1990. V. 57. № 10. P. 1046–1048. https://doi .org/10.1063/1.103561
  4. Narducci D., Giulio F. // Materials. 2022. V. 15. 1214. https://doi.org/10.3390/ma15031214
  5. Tang F., Tan Y., Jiang T., Zhou Y. // J. Mater. Sci. 2022. V. 57. P. 2803–2812. https://doi .org/10.1007/s10853-021-06679-3
  6. Long B., Zou Y., Li Z., Ma Z., Jiang W., Zou H., Chen H. // ACS Appl. Energy Mater. 2020. V. 3. № 6. P. 5572–5580. https://doi .org/10.1021/acsaem.0c00534
  7. Rowe D.J., Jeong J.S., Mkhoyan K.A., Kortshagen U.R. // Nano Lett. 2013. V. 13. P. 1317–1322. https://doi .org/10.1021/nl4001184
  8. Limpens R., Pach G.F., Neale N.R. // Chem. Mater. 2019. V. 31. P. 4426–4435. https://doi .org/10.1021/acs.chemmater.9b00810
  9. Zhou S., Pi X., Ni Z., Ding Y., Jiang Y., Jin C., Delerue C., Yang D., Nozaki T. // ACS Nano. 2015. V. 9. № 1. P. 378–386. https://doi .org/10.1021/nn505416r
  10. Scriba M.R., Britton D.T., Härting M. // Thin Solid Films. 2011. V. 519. P. 4491–4494. https://doi .org/10.1016/j.tsf.2011.01.330
  11. Knipping J., Wiggers H., Rellinghaus B., Roth P., Konjhodzic D., Meier C. // J. Nanosci. Nanotechnol. 2004. V. 4. P. 1039–1044. https://doi .org/10.1166/jnn.2004.149
  12. Ledoux G., Guillois O., Porterat D., Reynaud C., Huisken F., Kohn B., Paillard V. // Phys. Rev. B. 2000. V. 62. № 23. P. 15942–15951. https://doi .org/10.1103/PhysRevB.62.15942
  13. Rohani P., Banerjee S., Sharifi-Asl S., Malekzadeh M., Shahbazian-Yassar R., Billinge S.J.L., Swihart M.T. // Adv. Funct. Mater. 2019. V. 29. 1807788. https://doi .org/10.1002/adfm.201807788
  14. Lechner R., Stegner A.R., Pereira R.N., Dietmueller R., Brandt M.S., Ebbers A., Trocha M., Wiggers H., Stutzmann M. // J. Appl. Phys. 2008. V. 104. 053701. https://doi.org/10.1063/1.2973399
  15. Pi X.D., Gresback R., Liptak R.W., Campbell S.A., Kortshagen U. // Appl. Phys. Lett. 2008. V. 92. 123102. https://doi.org/10.1063/1.2897291
  16. Kortshagen U.R., Sankaran R.M., Pereira R.N., Girshick S.L., Wu J.J., Aydil E.S. // Chem. Rev. 2016. V. 116. P. 11061–11127. https://doi .org/10.1021/acs.chemrev.6b00039
  17. Zhou S., Ni Z., Ding Y., Sugaya M., Pi X., Nozaki T. // ACS Photonics. 2016. V. 3. № 3. P. 415–422. https://doi .org/10.1021/acsphotonics.5b00568
  18. Zhou S., Pi X., Ni Z., Luan Q., Jiang Y., Jin C., Nozaki T., Yang D. // Part. Part. Syst. Charact. 2015. V. 32. P. 213–221. https://doi .org/10.1002/ppsc.201400103
  19. Stegner A.R., Pereira R.N., Klein K., Lechner R., Dietmueller R., Brandt M.S., Stutzmann M., Wiggers H. // Phys. Rev. Lett. 2008. V. 100. 026803. https://doi.org/10.1103/PhysRevLett.100.026803
  20. Диаграммы состояния двойных металлических систем: Справочник. Т. 3. кн. 1. Лякишев Н.П. (ред.). М.: Машиностроение, 2001. 872 с.
  21. Zhou S., Ding Y., Pi X., Nozaki T. // Appl. Phys. Lett. 2014. V. 105. 183110. https://doi .org/10.1063/1.4901278
  22. Chen J., Rohani P., Karakalos S.G., Lance M.J., Toops T.J., Swihart M.T., Kyriakidou E.A. // Chem. Commun. 2020. V. 56. P. 9882–9885. https://doi .org/10.1039/D0CC02822C
  23. Ni Z., Pi X., Zhou S., Nozaki T., Grandidier B., Yang D. // Adv. Opt. Mater. 2016. V. 4. P. 700–707. https://doi.org/10.1002/adom.201500706
  24. Antognini L., Paratte V., Haschke J., Cattin J., Dréon J., Lehmann M., Senaud L.-L., Jeangros Q., Ballif C., Boccard M. // IEEE J. Photovolt. 2021. V. 11. № 4. P. 944–956. https://doi .org/10.1109/JPHOTOV.2021.3074072
  25. Delerue C. // Phys. Rev. B. 2018. V. 98. 045434. https://doi .org/10.1103/PhysRevB.98.045434
  26. Wang K., He Q., Yang D., Pi X. // Adv. Opt. Mater. 2022. V. 10. № 24. 2201831. https://doi .org/10.1002/adom.202201831
  27. Sugimoto H., Fujii M., Imakita K. // Nanoscale. 2014. V. 6. P. 12354–12359. https://doi .org/10.1039/c4nr03857f
  28. Milliken S., Cui K., Klein B.A., Cheong IT., Yu H., Michaelis V.K., Veinot J.G.C. // Nanoscale. 2021. V. 13. P. 18281–18292. https://doi .org/10.1039/d1nr05255a
  29. Trad F., Giba A.E., Devaux X., Stoffel M., Zhigunov D., Bouché A., Geiskopf S., Demoulin R., Pareige P., Talbot E., Vergnat M., Rinnert H. // Nanoscale. 2021. V. 13. P. 19617–19625. https://doi .org/ 10.1039/d1nr04765e
  30. Valdenaire A., Giba A.E., Stoffel M., Devaux X., Foussat L., Poumirol J.-M., Bonafos C., Guehairia S., Demoulin R., Talbot E., Vergnat M., Rinnert H. // ACS Appl. Nano Mater. 2023. V. 6. P. 3312–3320. https://doi .org/10.1021/acsanm.2c05088
  31. Kanzawa Y., Fujii M., Hayashi S., Yamamoto K. // Solid State Commun. 1996. V. 100. № 4. P. 227–230. https://doi.org/10.1016/0038-1098(96)00408-5
  32. Nomoto K., Sugimoto H., Breen A., Ceguerra A.V., Kanno T., Ringer S.P., Perez-Wurfl I., Conibeer G., Fujii M. // J. Phys. Chem. C. 2016. V. 120. P. 17845–17852. https://doi .org/10.1021/acs.jpcc.6b06197
  33. Sugimoto H., Fujii M., Fukuda M., Imakita K., Hayashi S. // J. Appl. Phys. 2011. V. 110. 063528. https://doi.org/10.1063/1.3642952
  34. Nomoto K., Cui X.-Y., Breen A., Ceguerra A.V., Perez-Wurfl I., Conibeer G., Ringer S.P. // Nanotechnology. 2022. V. 33. 075709. https://doi .org/10.1088/1361-6528/ac38e6
  35. Hao X.J., Cho E.-C., Flynn C., Shen Y.S., Conibeer G., Green M.A. // Nanotechnology. 2008. V. 19. 424019. https://doi .org/10.1088/0957-4484/19/42/424019
  36. Mimura A., Fujii M., Hayashi S., Kovalev D., Koch F. // Phys. Rev. B. 2000. V. 62. № 19. P. 12625–12627. https://doi.org/10.1103/PhysRevB.62.12625
  37. Sumida K., Ninomiya K., Fujii M., Fujio K., Hayashi S., Kodama M., Ohta H. // J. Appl. Phys. 2007. V. 101. 033504. https://doi .org/10.1063/1.2432377
  38. Fujii M., Mimura A., Hayashi S., Yamamoto K. // J. Appl. Phys. 2000. V. 87. № 4. P. 1855–1857. https://doi .org/10.1063/1.372103
  39. Almeida A.J., Sugimoto H., Fujii M., Brandt M.S., Stutzmann M., Pereira R.N. // Phys. Rev. B. 2016. V. 93. 115425. https://doi .org/10.1103/PhysRevB.93.115425
  40. Fujii M., Yamaguchi Y., Takase Y., Ninomiya K., Hayashi S. // Appl. Phys. Lett. 2004. V. 85. № 7. P. 1158–1160. https://doi .org/10.1063/1.1779955
  41. Fukuda M., Fujii M., Hayashi S. // J. Lumin. 2011. V. 131. P. 1066–1069. https://doi .org/10.1016/j.jlumin.2011.01.023
  42. Sugimoto H., Fujii M., Imakita K., Hayashi S., Akamatsu K. // J. Phys. Chem. C. 2013. V. 117. P. 11850–11857. https://doi .org/10.1021/jp4027767
  43. Sugimoto H., Fujii M., Imakita K., Hayashi S., Akamatsu K. // J. Phys. Chem. C. 2012. V. 116. P. 17969–17974. https://doi .org/10.1021/jp305832x
  44. Sugimoto H., Fujii M., Imakita K., Hayashi S., Akamatsu K. // J. Phys. Chem. C. 2013. V. 117. P. 6807–6813. https://doi .org/10.1021/jp312788k
  45. Kanno T., Sugimoto H., Fucikova A., Valenta J., Fujii M. // J. Appl. Phys. 2016. V. 120. 164307. https://doi .org/10.1063/1.4965986
  46. Hori Y., Kano S., Sugimoto H., Imakita K., Fujii M. // Nano Lett. 2016. V. 16. № 4. P. 2615–2620. https://doi .org/10.1021/acs.nanolett.6b00225
  47. Fujio K., Fujii M., Sumida K., Hayashi S., Fujisawa M., Ohta H. // Appl. Phys. Lett. 2008. V. 93. 021920. https://doi.org/10.1063/1.2957975
  48. Zeng Y., Dai N., Cheng Q., Huang J., Liang X., Song W. // Mater. Sci. Semicond. Process. 2013. V. 16. P. 598–604. https://doi .org/10.1016/j.mssp.2012.10.010
  49. Song D., Cho E.-C., Conibeer G., Flynn C., Huang Y., Green M.A. // Sol. Energy Mater. Sol. Cells. 2008. V. 92. P. 474–481. https://doi .org/10.1016/j.solmat.2007.11.002
  50. So Y.-H., Huang S., Conibeer G., Green M.A. // EPL. 2011. V. 96. 17011. https://doi .org/10.1209/0295-5075/96/17011
  51. Mathiot D., Khelifi R., Muller D., Duguay S. // Mater. Res. Soc. symp. proc. 2012. 1455. mrss12-1455-ii08-21. https://doi .org/10.1557/opl.2012.1238.
  52. Demoulin R., Muller D., Mathiot D., Pareige P., Talbot E. // Phys. Status Solidi RRL. 2020. V. 14. 2000107. https://doi.org/10.1002/pssr.202000107
  53. Demoulin R., Roussel M., Duguay S., Muller D., Mathiot D., Pareige P., Talbot E. // J. Phys. Chem. C. 2019. V. 123. P. 7381–7389. https://doi .org/10.1021/acs.jpcc.8b08620
  54. Khelifi R., Mathiot D., Gupta R., Muller D., Roussel M., Duguay S. // Appl. Phys. Lett. 2013. V. 102. 013116. https://doi.org/10.1063/1.4774266
  55. Yang P., Gwillaim R.M., Crowe I.F., Papachristodoulou N., Halsall M.P., Hylton N.P., Hulko O., Knights A.P., Shah M., Kenyon A.P. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 456–458. https://doi .org/10.1016/j.nimb.2012.12.077
  56. Качурин Г.А., Черкова С.Г., Володин В.А., Марин Д.М., Тетельбаум Д.И., Becker H. // ФТП. 2006. Т. 40. № 1. С. 75–81.
  57. Murakami K., Shirakawa R., Tsujimura M., Uchida N., Fukata N., Hishita S.-I. // J. Appl. Phys. 2009. V. 105. 054307. https://doi .org/10.1063/1.3088871
  58. Zhang M., Poumirol J.-M., Chery N., Majorel C., Demoulin R., Talbot E., Rinnert H., Girard C., Cristiano F., Wiecha P.R., Hungria T., Paillard V., Arbouet A., Pécassou B., Gourbilleau F., Bonafos C. // Nanophotonics. 2022. V. 11. № 15. P. 3485–3493. https://doi.org/10.1515/nanoph-2022-0283
  59. Качурин Г.А., Яновская С.Г., Тетельбаум Д.И., Михайлов А.Н. // ФТП. 2003. Т. 37. № 6. С. 738–742.
  60. Zhang M., Poumirol J.-M., Chery N., Rinnert H., Giba A.E., Demoulin R., Talbot E., Cristiano F., Hungria T., Paillard V., Gourbilleau F., Bonafos C. // Nanoscale. 2023. V. 15. P. 7438–7449. https://doi .org/10.1039/D3NR00035D
  61. Ruffino F., Romano L., Carria E., Miritello M., Grimaldi M.G., Privitera V., Marabelli F. // J. Nanotechnol. 2012. V. 2012. 635705. https://doi .org/10.1155/2012/635705
  62. Makimura T., Yamamoto Y., Mitani S., Mizuta T., Li C.Q., Takeuchi D., Murakami K. // Appl. Surf. Sci. 2002. V. 197–198. P. 670–673. https://doi .org/10.1016/S0169-4332(02)00438-5
  63. Hiller D., López-Vidrier J., Gutsch S., Zacharias M., Wahl M., Bock W., Brodyanski A., Kopnarski M., Nomoto K., Valenta J., König D. // Sci. Rep. 2017. V. 7. 8337. https://doi .org/10.1038/s41598-017-08814-0
  64. Kobayashi H., Akaishi R., Kato S., Kurosawa M., Usami N., Kurokawa Y. // Jpn. J. Appl. Phys. 2020. V. 59. SGGF09. https://doi .org/10.7567/1347-4065/ab6346
  65. Gutsch S., Hartel A.M., Hiller D., Zakharov N., Werner P., Zacharias M. // Appl. Phys. Lett. 2012. V. 100. 233115. https://doi .org/10.1063/1.4727891
  66. Gutsch S., Laube J., Hiller D., Bock W., Wahl M., Kopnarski M., Gnaser H., Puthen-Veettil B., Zacharias M. // Appl. Phys. Lett. 2015. V. 106. 113103. https://doi .org/10.1063/1.4915307
  67. Hiller D., López-Vidrier J., Gutsch S., Zacharias M., Nomoto K., König D. // Sci. Rep. 2017. V. 7. 863. https://doi.org/10.1038/s41598-017-01001-1
  68. Nomoto K., Hiller D., Gutsch S., Ceguerra A.V., Breen A., Zacharias M., Conibeer G., Perez-Wurfl I., Ringer S.P. // Phys. Status Solidi RRL. 2017. V. 11. № 1. 1600376. https://doi .org/10.1002/pssr.201600376
  69. Gnaser H., Gutsch S., Wahl M., Schiller R., Kopnarski M., Hiller D., Zacharias M. // J. Appl. Phys. 2014. V. 115. 034304. https://doi .org/10.1063/1.4862174
  70. Shyam S., Das D. // J. Alloys Compd. 2021. V. 876. 160094. https://doi .org/10.1016/j.jallcom.2021.160094
  71. Pi X., Delerue C. // Phys. Rev. Lett. 2013. V. 111. 177402. https://doi .org/10.1103/PhysRevLett.111.177402
  72. Nomoto K., Sugimoto H., Cui X.-Y., Ceguerra A.V., Fujii M., Ringer S.P. // Acta Mater. 2019. V. 178. P. 186–193. https://doi .org/10.1016/j.actamat.2019.08.013
  73. Pi X., Chen X., Yang D. // J. Phys. Chem. C. 2011. V. 115. P. 9838–9843. https://doi .org/10.1021/jp111548b
  74. Chan T.-L., Tiago M.L., Kaxiras E., Chelikowsky J.R. // Nano Lett. 2008. V. 8. № 2. P. 596–600. https://doi .org/10.1021/nl072997a
  75. Bulyarskiy S.V., Svetukhin V.V. // Mater. Sci. Eng. B. 2021. V. 272. 115337. https://doi .org/10.1016/j.mseb.2021.115337
  76. Bulyarskiy S.V., Svetukhin V.V. // J. Nanopart. Res. 2020. V. 22. 361. https://doi .org/10.1007/s11051-020-05069-1
  77. Perego M., Bonafos C., Fanciulli M. // Nanotechnology. 2010. V. 21. 025602. https://doi .org/10.1088/0957-4484/21/2/025602
  78. Chen X., Yang P. // Int. J. Mod. Phys. B. 2017. V. 31. 1750110. https://doi .org/10.1142/S0217979217501107
  79. Perego M., Seguini G., Fanciulli M. // Surf. Interface Anal. 2013. V. 45. P. 386–389. https://doi .org/10.1002/sia.5001
  80. Perego M., Seguini G., Arduca E., Frascaroli J., De Salvador D., Mastromatteo M., Carnera A., Nicotra G., Scuderi M., Spinella C., Impellizzeri G., Lenardie C., Napolitani E. // Nanoscale. 2015. V. 7. P. 14469–14475. https://doi .org/10.1039/C5NR02584B
  81. Milliken S., Cheong IT., Cui K., Veinot J.G.C. // ACS Appl. Nano Mater. 2022. V. 5. P. 15785–15796. https://doi.org/10.1021/acsanm.2c03937
  82. Bubenov S.S., Dorofeev S.G., Eliseev A.A., Kononov N.N., Garshev A.V., Mordvinova N.E., Lebedev O.I. // RSC Adv. 2018. V. 8. P. 18896–18903. https://doi .org/10.1039/c8ra03260b
  83. Дорофеев С.Г., Кононов Н.Н., Бубенов С.С., Попеленский В.М., Винокуров А.А. // ФТП. 2022. Т. 56. № 2. С. 204–212. https://doi .org/10.21883/FTP.2022.02.51963.9727
  84. Popelensky V.M., Chernysheva G.S., Kononov N.N., Bubenov S.S., Vinokurov A.A., Dorofeev S.G. // Inorg. Chem. Commun. 2022. V. 141. 109602. https://doi .org/10.1016/j.inoche.2022.109602
  85. Vinokurov A., Popelensky V., Bubenov S., Kononov N., Cherednichenko K., Kuznetsova T., Dorofeev S. // Materials. 2022. V. 15. 8842. https://doi .org/10.3390/ma15248842
  86. Klimešová E., Kůsová K., Vacík J., Holý V., Pelant I. // J. Appl. Phys. 2012. V. 112. 064322. https://doi .org/10.1063/1.4754518
  87. Nastulyavichus A.A., Saraeva I.N., Rudenko A.A., Khmelnitskii R.A., Shakhmin A.L., Kirilenko D.A., Brunkov P.N., Melnik N.N., Smirnov N.A., Ionin A.A., Kudryashov S.I. // Part. Part. Syst. Charact. 2020. V. 37. 2000010. https://doi.org/10.1002/ppsc.202000010
  88. Baldwin R.K., Zou J., Pettigrew K.A., Yeagle G.J., Britt R.D., Kauzlarich S.M. // Chem. Commun. 2006. P. 658–660. https://doi.org/10.1039/B513330K
  89. Singh M.P., Atkins T.M., Muthuswamy E., Kamali S., Tu C., Louie A.Y., Kauzlarich S.M. // ACS Nano. 2012. V. 6. № 6. P. 5596–5604. https://doi .org/10.1021/nn301536n
  90. Zhang X., Brynda M., Britt R.D., Carroll E.C., Larsen D.S., Louie A.Y., Kauzlarich S.M. // J. Am. Chem. Soc. 2007. V. 129. P. 10668–10669. https://doi .org/10.1021/ja074144q
  91. McVey B.F.P., Butkus J., Halpert J.E., Hodgkiss J.M., Tilley R.D. // J. Phys. Chem. Lett. 2015. V. 6. № 9. P. 1573–1576. https://doi .org/10.1021/acs.jpclett.5b00589
  92. McVey B.F.P., König D., Cheng X., O’Mara P.B., Seal P., Tan X., Tahini H.A., Smith S.C., Gooding J.J., Tilley R.D. // Nanoscale. 2018. V. 10. № 33. P. 15600–15607. https://doi.org/10.1039/C8NR05071F
  93. Meier C., Gondorf A., Lüttjohann S., Lorke A. // J. Appl. Phys. 2007. V. 101. 103112. https://doi .org/10.1063/1.2720095
  94. Ramos L.E., Degoli E., Cantele G., Ossicini S., Ninno D., Furthmüller J., Bechstedt F. // Phys. Rev. B. 2008. V. 78. 235310. https://doi .org/10.1103/PhysRevB.78.235310
  95. Ni Z., Pi X., Yang D. // Phys. Rev. B. 2014. V. 89. 035312. https://doi.org/10.1103/PhysRevB.89.035312
  96. Pi X., Ni Z., Yang D., Delerue C. // J. Appl. Phys. 2014. V. 116. 194304. https://doi.org/10.1063/1.4901947
  97. Limpens R., Pach G.F., Mulder D.W., Neale N.R. // J. Phys. Chem. C. 2019. V. 123. P. 5782–5789. https://doi .org/10.1021/acs.jpcc.9b00223
  98. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. // J. Phys. Chem. B. 2003. V. 107. P. 668–677. https://doi .org/10.1021/jp026731y
  99. Faucheaux J.A., Stanton A.L.D., Jain P.K. // J. Phys. Chem. Lett. 2014. V. 5. P. 976–985. https://doi .org/10.1021/jz500037k
  100. Mendelsberg R.J., Garcia G., Li H., Manna L., Milliron D.J. // J. Phys. Chem. C. 2012. V. 116. P. 12226–12231. https://doi .org/10.1021/jp302732s
  101. Kriegel I., Rodríguez-Fernández J., Wisnet A., Zhang H., Waurisch C., Eychmüller A., Dubavik A., Govorov A.O., Feldmann J. // ACS Nano. 2013. V. 7. № 5. P. 4367–4377. https://doi .org/10.1021/nn400894d
  102. Kramer N.J., Schramke K.S., Kortshagen U.R. // Nano Lett. 2015. V. 15. P. 5597–5603. https://doi .org/10.1021/acs.nanolett.5b02287
  103. Somogyi B., Derian R., Štich I., Gali A. // J. Phys. Chem. C. 2017. V. 121. P. 27741–27750. https://doi .org/10.1021/acs.jpcc.7b09501
  104. Pereira R.N., Niesar S., You W.B., da Cunha A.F., Erhard N., Stegner A.R., Wiggers H., Willinger M.-G., Stutzmann M., Brandt M.S. // J. Phys. Chem. C. 2011. V. 115. P. 20120–20127. https://doi .org/10.1021/jp205984m
  105. Meseth M., Ziolkowski P., Schierning G., Theissmann R., Petermann N., Wiggers H., Benson N., Schmechel R. // Scr. Mater. 2012. V. 67. P. 265–268. https://doi .org/10.1016/j.scriptamat.2012.04.039
  106. Seino K., Bechstedt F., Kroll P. // Phys. Rev. B. 2012. V. 86. 075312. https://doi .org/10.1103/PhysRevB.86.075312
  107. Balberg I. // Physica E Low Dimens. Syst. Nanostruct. 2013. V. 51. P. 2–9. https://doi .org/10.1016/j.physe.2013.02.001
  108. Chen T., Reich K.V., Kramer N.J., Fu H., Kortshagen U.R., Shklovskii B.I. // Nat. Mater. 2016. V. 15. P. 299–303. https://doi .org/10.1038/nmat4486
  109. Gresback R., Kramer N.J., Ding Y., Chen T., Kortshagen U.R., Nozaki T. // ACS Nano. 2014. V. 8. № 6. P. 5650–5656. https://doi .org/10.1021/nn500182b
  110. Fernández-Serra M.-V., Adessi Ch., Blase X. // Nano Lett. 2006. V. 6. № 12. P. 2674–2678. https://doi .org/10.1021/nl0614258
  111. Huang J., Wang L., Sun H., Wang H., Gao M., Cheng W., Chen Z. // Mater. Sci. Semicond. Process. 2016. V. 47. P. 7–11. https://doi .org/10.1016/j.mssp.2016.01.005
  112. Sasaki M., Kano S., Sugimoto H., Imakita K., Fujii M. // J. Phys. Chem. C. 2016. V. 120. P. 195–200. https://doi .org/10.1021/acs.jpcc.5b05604
  113. Li D., Jiang Y., Liu J., Zhang P., Xu J., Li W., Chen K. // Nanotechnol. 2017. V. 28. 475704. https://doi .org/10.1088/1361-6528/aa852e
  114. Perez-Wurfl I., Hao X., Gentle A., Kim D.-H., Conibeer G., Green M.A. // Appl. Phys. Lett. 2009. V. 95. 153506. https://doi .org/10.1063/1.3240882
  115. Hong S.H., Kim Y.S., Lee W., Kim Y.H., Song J.Y., Jang J.S., Park J.H., Choi S.H., Kim K.J. // Nanotechnol. 2011. V. 22. № 42. 425203. https://doi .org/10.1088/0957-4484/22/42/425203
  116. Daoudi K., Columbus S., Falcão B.P., Pereira R.N., Peripolli S.B., Ramachandran K., Kacem H.H., Allagui A., Gaidi M. // Spectrochim. Acta A Mol.Biomol. Spectrosc. 2023. V. 290. 122262. https://doi .org/10.1016/j.saa.2022.122262

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Сравнение содержаний примесей (ат. %) бора и фосфора, определенных химическим титрованием (cct) и из спектров РФЭС (cxps); пунктирная линия соответствует совпадению определяемых значений. Публикуется с раз- решения правообладателя [18]. Copyright  2015 John Wiley and Sons.

Скачать (151KB)
3. Рис. 2. Проксиграммы внедренных в оксидную матрицу нч-Si легированных бором (а), фосфором (б), совместно бором и фосфором (в). Ноль отсчета соответствует интерфейсу кремний/оксид, положительные значения отвечают кремниевым ядрам, отрицательные – диэлектрической матрице. Адаптировано с разрешения правообладателя [32]. Copyright  2016 American Chemical Society.

Скачать (474KB)
4. Рис. 3. Время жизни нейтрального/заряженного биэкси- тона в нч-Si как функция размера: собственные частицы (черные символы), легированные фосфором (красные сим- волы), легированные бором (голубые символы). Адаптиро- вано с разрешения правообладателя [97]. Copyright  2019 American Chemical Society.

Скачать (204KB)
5. Рис. 4. ИК-спектры нч-Si с разным уровнем легирования: (а) частицы, синтезированные плазмохимически (на спектрах указан номинальный уровень легирования фосфором, заданный соотношением реагентов); (б) частицы, синтезирован- ные лазерно-индуцированным пиролизом (для спектров указано содержание бора в частицах). Адаптировано с разреше- ния правообладателей [7] (Copyright  2013 American Chemical Society) и [13] (Copyright  2019 John Wiley and Sons).

Скачать (413KB)
6. Рис. 5. Величина энергетической щели для совместно ле- гированных нч-Si разного диаметра с разным числом пар бор–фосфор, усредненная по случайным конфигурациям атомов примеси. Адаптировано с разрешения правобладателя [25]. Copyright  2018 American Physical Society.

Скачать (173KB)
7. Рис. 6. Пороговое напряжение полевого транзистора с то- копроводящим каналом из нч-Si разного размера в зави- симости от номинального уровня легирования для приме- си фосфора (красные символы) и бора (синие символы), а также из нелегированных частиц (черные символы). Ли- нии соответствуют разным уровням электрической актив- ности примеси η. Адаптировано с разрешения правообладателя [109]. Copyright  2014 American Chemical Society.

Скачать (275KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».