PHASE EQUILIBRIA IN THE Li–Mn–Eu–O SYSTEM

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Phase equilibria in the Li–Mn–Eu–O system were studied for the first time in the temperature range 700–1000°С, and a concentration diagram was plotted within the Li–Mn–Eu triangle at an oxygen partial pressure of 21 kPa. It is shown that the LiEuO2–Li2MnO3 system is quasi-binary, unlike the sections LiEuO2–LiMnO2 and LiEuO2–LiMn2O4. It has been established that, for spinel LiMn2O4 (Fd\(\bar {3}\)m), a homogeneous introduction of 2 mol % Eu is possible, while in the case of Li2MnO3 (C2/m), the single-phase state decays.

Sobre autores

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: gbuzanov@yandex.ru
Russian Federation, 119071, Moscow

G. Nipan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gbuzanov@yandex.ru
Russian Federation, 119071, Moscow

Bibliografia

  1. Mosa J., Aparacio M. Handbook of sol-gel science and technology. Cham. Springer. 2017. 36 p. https://doi.org/10.1007/978-3-319-19454-7_108-1
  2. Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuzne-tsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551–557. https://doi.org/10.1134/s0036023617050059
  3. Su Z., Xu M.-W., Ye S.-H., Wang Y.-L. // Acta Phys.-Chim. Sin. 2009. V. 25. № 6. P. 1232–1238. https://doi.org/10.3866/PKU.WHXB20090629
  4. Zhao G., He J., Zhang C., Pan K., Zhou J. // Rare Metal Mat. Eng. 2008. V. 37. № 4. P. 709–712. (in Chin.)
  5. Zhou Z.-H., Mei T.-Q. // Modern Chem. Ind. 2009. V. 29. P. № 9. 246–248. (in Chin.)
  6. Feng C., Tang H., Zhang K., Sun J. // Mater. Chem. Phys. 2003. V. 80. № 3. P. 573–576. https://doi.org/10.1016/S0254-0584(03)00115-9
  7. Elsabawy K.M., Abou-Sekkina M.M., Elmetwaly E.C. // Solid State Sci. 2011. V. 13. № 3. P. 601–606. https://doi.org/10.1016/j.solidstatesciences.2010.12.033
  8. Xie Y., Xu Y., Yan L., Yang Z., Yang R. // Solid State Ion. 2005. V. 176. № 35–36. P. 2563–2569. https://doi.org/10.1016/j.ssi.2005.06.022
  9. Sun H., Chen Y., Xu C., Zhu D., Huang L. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247–1254. https://doi.org/10.1007/s10008-011-1514-5
  10. Zhang H.-L., Ren R., An J. // Mater. Sci. Forum. 2011. V. 686. P. 716–719. https://doi.org/10.4028/www.scientific.net/MSF.686.716
  11. Michalska M., Ziókowska D.A., Jasiński J.B., Lee P.-H., Ławniczak P., Andrzejewski B., Ostrowski A., Bednarski W., Wu S.-H., Lin J.-Y. // Electrochim. Acta. 2018. V. 276. P. 37–46. https://doi.org/10.1016/j.electacta.2018.04.165
  12. Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G. // J. Electronic. Mater. 2013. V. 42. № 6. 1275–1281. https://doi.org/10.1007/s11664-013-2588-x
  13. Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G. // Chem. Mater. Res. 2013. V. 3. № 4. P. 15–25.
  14. Liu H.W., Zhang K.L. // Mater. Lett. 2004. V. 58. P. 3049–3051. https://doi.org/10.1016/j.matlet.2004.05.040
  15. Yuzer A., Ozkendir O.M. // J. Electronic Mater. 2016. V. 45. № 2. P. 989–998. https://doi.org/10.1007/s11664-015-4256-9

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (466KB)
3.

Baixar (482KB)
4.

Baixar (611KB)
5.

Baixar (206KB)

Declaração de direitos autorais © Г.А. Бузанов, Г.Д. Нипан, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies