C(2)H-ALKYLATION OF (BENZ)OXAZOLES WITH TERTIARY ALKYL CHLORIDES AND BROMIDES UNDER PHOTOINDUCED PALLADIUM CATALYSIS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for selective C(2)H alkylation of (benz)oxazoles with tertiary alkyl chlorides and alkyl bromides under photoinduced by visible light (460 nm) catalysis with Pd(PPh3)4/[Bu4N]I system in N,N-dimethylacetamide has been developed. Tetraalkylammonium salt has a significant promoting effect on the reaction which seems to be based on the stabilization of nanosized palladium species in the catalytic system.

作者简介

I. Lavrentev

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

A. Astakhov

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

K. Shepelenko

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

V. Chernyshev

Platov South-Russian State Polytechnic University (NPI),

编辑信件的主要联系方式.
Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

参考

  1. Zhang H.-Z., Zhao Z.-L., Zhou C.-H. // Eur. J. Med. Chem. 2018. V. 144. P. 444–492. https://doi.org/10.1016/j.ejmech.2017.12.044
  2. Ankita P., Sharad W., Faizana F., Chitwan C. // World J. Pharm. Sci. 2018. V. 6. № 10. P. 17–24. https://www.wjpsonline.com/index.php/wjps/article/view/benzoxazoles-mini-review
  3. Thakur A., Verma M., Bharti R., Sharma R. // Tetra-hedron. 2022. V. 119. P. 132813. https://doi.org/10.1016/j.tet.2022.132813
  4. Basak S., Dutta S., Maiti D. // Chem. Eur. J. 2021. V. 27. № 41. P. 10533–10557. https://doi.org/10.1002/chem.202100475
  5. Evano G., Theunissen C. // Angew. Chem., Int. Ed. 2019. V. 58. № 23. P. 7558–7598. https://doi.org/10.1002/anie.201806631
  6. Ankade S.B., Shabade A.B., Soni V., Punji B. // ACS Catal. 2021. V. 11. № 6. P. 3268–3292. https://doi.org/10.1021/acscatal.0c05580
  7. Chen S., Ranjan P., Voskressensky L.G., Van der Eycken E.V., Sharma U.K. // Molecules. 2020. V. 25. № 21. P. 4970. https://doi.org/10.3390/molecules25214970
  8. Bera A., Kabadwal L.M., Bera S., Banerjee D. // Chem. Commun. 2022. V. 58. № 1. P. 10–28. https://doi.org/10.1039/D1CC05899A
  9. Dong Z., Ren Z., Thompson S.J., Xu Y., Dong G. // Chem. Rev. 2017. V. 117. № 13. P. 9333–9403. https://doi.org/10.1021/acs.chemrev.6b00574
  10. Gandeepan P., Müller T., Zell D., Cera G., Warratz S., Ackermann L. // Chem. Rev. 2019. V. 119. № 4. P. 2192–2452. https://doi.org/10.1021/acs.chemrev.8b00507
  11. Khazipov O.V., Shepelenko K.E., Pasyukov D.V., Chesno-kov V.V., Soliev S.B., Chernyshev V.M., Ananikov V.P. // Org. Chem. Front. 2021. V. 8. № 11. P. 2515–2524. https://doi.org/10.1039/D1QO00309G
  12. Chernyshev V.M., Ananikov V.P. // ACS Catal. 2022. V. 12. № 2. P. 1180–1200. https://doi.org/10.1021/acscatal.1c04705
  13. Hansen T., Sun X., Dalla Tiezza M., van Zeist W.-J., Poater J., Hamlin T.A., Bickelhaupt F.M. // Chem. Eur. J. 2022. V. 28. № 26. e202103953. https://doi.org/https://doi.org/10.1002/chem.202103953
  14. Yao T., Hirano K., Satoh T., Miura M. // Chem. Eur. J. 2010. V. 16. № 41. P. 12307–12311. https://doi.org/10.1002/chem.201001631
  15. Wu X., See J.W.T., Xu K., Hirao H., Roger J., Hierso J.-C., Zhou J. // Angew. Chem., Int. Ed. 2014. V. 53. № 49. P. 13573–13577. https://doi.org/10.1002/anie.201408355
  16. Wu X., Lei C., Yue G., Zhou J. // Angew. Chem., Int. Ed. 2015. V. 54. № 33. P. 9601 9605. https://doi.org/10.1002/anie.201504735
  17. Vechorkin O., Proust V., Hu X. // Angew. Chem., Int. Ed. 2010. V. 49. № 17. P. 3061–3064. https://doi.org/10.1002/anie.200907040
  18. Ackermann L., Punji B., Song W. // Adv. Synth. Catal. 2011. V. 353. № 18. P. 3325–3329. https://doi.org/10.1002/adsc.201100487
  19. Patel U.N., Pandey D.K., Gonnade R.G., Punji B. // Organometallics. 2016. V. 35. № 11. P. 1785–1793. https://doi.org/10.1021/acs.organomet.6b00201
  20. Mandapati P., Braun J.D., Sidhu B.K., Wilson G., Herbert D.E. // Organometallics. 2020. V. 39. № 10. P. 1989–1997. https://doi.org/10.1021/acs.organomet.0c00161
  21. Ren P., Salihu I., Scopelliti R., Hu X. // Org. Lett. 2012. V. 14. № 7. P. 1748–1751. https://doi.org/10.1021/ol300348w
  22. Li W., Varenikov A., Gandelman M. // Eur. J. Org. Chem. 2020. V. 2020. № 21. P. 3138–3141. https://doi.org/10.1002/ejoc.201901929
  23. Su X.-L., Ye L., Chen J.-J., Liu X.-D., Jiang S.-P., Wang F.-L., Liu L., Yang C.-J., Chang X. Y., Li Z.-L., Gu Q.-S., Liu X.-Y. // Angew. Chem., Int. Ed. 2021. V. 60. № 1. P. 380–384. https://doi.org/10.1002/anie.202009527
  24. Kancherla R., Muralirajan K., Sagadevan A., Rue-ping M. // Trends Chem. 2019. V. 1. № 5. P. 510–523. https://doi.org/10.1016/j.trechm.2019.03.012
  25. Cheng W.-M., Shang R. // ACS Catal. 2020. V. 10. № 16. P. 9170–9196. https://doi.org/10.1021/acscatal.0c01979
  26. Liu Z., Chen X.-Y. // Chem. 2020. V. 6. № 6. P. 1219–1221. https://doi.org/10.1016/j.chempr.2020.05.015
  27. Cheung K.P.S., Sarkar S., Gevorgyan V. // Chem. Rev. 2022. V. 122. № 2. P. 1543–1625. https://doi.org/10.1021/acs.chemrev.1c00403
  28. Jardim G.A.M., Dantas J.A., Barboza A.A., Paixão M.W., Ferreira M.A.B. // Synthesis. 2022. V. 54. № 21. P. 4629 4645. https://doi.org/10.1055/a-1898-1816
  29. Zhou W.J., Cao G.M., Shen G., Zhu X.Y., Gui Y.Y., Ye J.H., Sun L., Liao L.L., Li J., Yu D.G. // Angew. Chem., Int. Ed. 2017. V. 56. № 49. P. 1568–15687. https://doi.org/10.1002/anie.201704513
  30. Wang G.-Z., Shang R., Fu Y. // Synthesis. 2018. V. 50. № 15. P. 2908–2914. https://doi.org/10.1055/s-0036-1592000
  31. Lee G.S., Kim D., Hong S.H. // Nat. Commun. 2021. V. 12. № 1. P. 991. https://doi.org/10.1038/s41467-021-21270-9
  32. Muralirajan K., Kancherla R., Gimnkhan A., Rueping M. // Org. Lett. 2021. V. 23. № 17. P. 6905–6910. https://doi.org/10.1021/acs.orglett.1c02467
  33. Crabtree R.H. // Chem. Rev. 2015. V. 115. № 1. P. 127–150. https://doi.org/10.1021/cr5004375
  34. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. // Curr. Opin. Green Sustainable Chem. 2021. V. 31. P. 100502. https://doi.org/10.1016/j.cogsc.2021.100502
  35. Chernyshev V.M., Khazipov O.V., Eremin D.B., Deni-sova E.A., Ananikov V.P. // Coord. Chem. Rev. 2021. V. 437. P. 213860. https://doi.org/10.1016/j.ccr.2021.213860
  36. Polynski M.V., Ananikov V.P. // ACS Catal. 2019. V. 9. № 5. P. 3991–4005. https://doi.org/10.1021/acscatal.9b00207
  37. Ott L.S., Finke R.G. // Coord. Chem. Rev. 2007. V. 251. № 9. P. 1075–1100. https://doi.org/10.1016/j.ccr.2006.08.016
  38. Eremin D.B., Denisova E.A., Yu. Kostyukovich A., Martens J., Berden G., Oomens J., Khrustalev V.N., Chernyshev V.M., Ananikov V.P. // Chem. – Eur. J. 2019. V. 25. № 72. P. 16564–16572. https://doi.org/10.1002/chem.201903221
  39. Shepelenko K.E., Soliev S.B., Galushko A.S., Chernyshev V.M., Ananikov V.P. // Inorg. Chem. Front. 2021. V. 8. № 6. P. 1511–1527. https://doi.org/10.1039/D0QI01411G
  40. Kim D., Lee G.S., Kim D., Hong S.H. // Nat. Commun. 2020. V. 11. № 1. P. 5266. https://doi.org/10.1038/s41467-020-19038-8
  41. Li C., Chen B., Ma X., Mo X., Zhang G. // Angew. Chem., Int. Ed. 2021. V. 60. № 4. P. 2130–2134. https://doi.org/10.1002/anie.202009323
  42. Zhou W.-J., Cao G.-M., Zhang Z.-P., Yu D.-G. // Chem. Lett. 2019. V. 48. № 3. P. 181–191. https://doi.org/10.1246/cl.190006
  43. Chuentragool P., Kurandina D., Gevorgyan V. // Angew. Chem., Int. Ed. 2019. V. 58. № 34. P. 11586–11598. https://doi.org/10.1002/anie.201813523
  44. Ozawa F., Kubo A., Hayashi T. // Chem. Lett. 1992. V. 21. № 11. P. 2177–2180. https://doi.org/10.1246/cl.1992.2177
  45. Grushin V.V., Alper H. // Organometallics. 1993. V. 12. № 5. P. 1890–1901. https://doi.org/10.1021/om00029a052
  46. Fors B.P., Krattiger P., Strieter E., Buchwald S.L. // Org. Lett. 2008. V. 10. № 16. P. 3505–3508. https://doi.org/10.1021/ol801285g
  47. Amatore C., El Kaïm L., Grimaud L., Jutand A., Meignié A., Romanov G. // Eur. J. Org. Chem. 2014. V. 2014. № 22. P. 4709–4713. https://doi.org/10.1002/ejoc.201402519
  48. Zhao W.-M., Chen X.-L., Yuan J.-W., Qu L.-B., Duan L.-K., Zhao Y.-F. // Chem. Commun. 2014. V. 50. № 16. P. 2018–2020. https://doi.org/10.1039/C3CC48069K
  49. Gieshoff T., Kehl A., Schollmeyer D., Moeller K.D., Waldvogel S.R. // Chem. Commun. 2017. V. 53. № 20. P. 2974–2977. https://doi.org/10.1039/C7CC00927E
  50. Koeller J., Gandeepan P., Ackermann L. // Synthesis. 2019. V. 51. № 5. P. 1284–1292. https://doi.org/10.1055/s-0037-1611633
  51. Zhao M.-N., Ning G.-W., Yang D.-S., Fan M.-J., Zhang S., Gao P., Zhao L.-F. // J. Org. Chem. 2021. V. 86. № 3. P. 2957–2964. https://doi.org/10.1021/acs.joc.0c02843

补充文件

附件文件
动作
1. JATS XML
2.

下载 (139KB)
3.

下载 (226KB)
4.

下载 (146KB)
5.

下载 (82KB)

版权所有 © И.В. Лаврентьев, А.В. Астахов, К.Е. Шепеленко, В.М. Чернышев, 2023

##common.cookie##