STRUCTURAL DESIGN OF Eu2+-CONTAINING GLASS AND GLASS-CERAMICS BASED ON THE SYSTEM BaO–ZrO2–SiO2–MgF2 FOR LED APPLICATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, an approach to designing the structure of Eu2+ containing silicate glass-ceramics materials has been experimentally implemented, which consists in the fact that rare earth activator is introduced into various crystals formed during glass crystallization. Transparent Eu-containing glass and glass ceramics based on the system BaO–ZrO2–SiO2–MgF2 were prepared by the traditional glass melting method at 1450°C. The crystal structure and properties of materials were characterized by XRD analysis and photoluminescence spectroscopy during different stages of glass crystallization. It is shown that the simultaneous incorporation of Eu into different silicate crystals (Ba2SiO4, BaMgSiO4, and BaSiO3) formed during the glass crystallization leads to the formation of a material with a wide luminescence band in the visible part of the spectrum. The study of photoluminescence and luminescence excitation spectra of the glass suggests the possibility of energy transfer from Eu2+ to Eu3+ ions. The structures of Eu2+ luminescent centers are similar in the glass and glass-ceramics that is related to some phase separation in the glass before crystallization. The study of luminescence properties of prepared materials showed that these materials can be promising for the application in LEDs techniques.

Sobre autores

S. Evstropiev

ITMO University; JVC “RPA “Vavilov State Optical Institute””; Saint-Petersburg State Technological Institute (Technical University)

Autor responsável pela correspondência
Email: evstropiev@bk.ru
Russian Federation, 197101, St.-Petersburg; Russian Federation, 192171, St.-Petersburg; Russian Federation, 190013, St.-Petersburg

V. Stolyarova

I.V. Grebenshikov Institute of Silicate Chemistry, Russian Academy of Sciences; Saint-Petersburg State University

Email: evstropiev@bk.ru
Russian Federation, 199034, St.-Petersburg; Russian Federation, 199034, St.-Petersburg

N. Kyazyan

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Armenia

Email: evstropiev@bk.ru
Republic of Armenia, 0051, Yerevan

G. Manukyan

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Armenia

Email: evstropiev@bk.ru
Republic of Armenia, 0051, Yerevan

A. Shashkin

JVC “RPA “Vavilov State Optical Institute””

Email: evstropiev@bk.ru
Russian Federation, 192171, St.-Petersburg

Bibliografia

  1. Liu J., Wang Z., He K., Wei L., Zhang Z., Wei Z., Yu H., Zhang H., Wang J. // Opt. Express. 2014. V. 22. № 22. P. 26933–26938. https://doi.org/10.1364/OE.22.026933
  2. Булыга Д.В., Евстропьев С.К. // Опт. и спектр. 2022. Т. 130. № 9. С. 1455–1463. https://doi.org/10.21883/OS.2022.09.53309.3617-22
  3. Vu N.-N., Kaliaguine S., Do T.-O. // Adv. Funct. Mater. 2019. V. 29. P. 1901825. https://doi.org/10.1002/adfm.201901825
  4. Hu T., Ning L., Gao Y., Qiao J., Song E., Chen Z., Zhou Y., Wang J., Molokeev M.S., Ke X., Xia Z., Zhang Q. // Light Sci. Appl. 2021. V. 10. P. 56. https://doi.org/10.1038/s41377-021-00498-6
  5. Biswas K., Sontakke A.D., Sen R., Annapurna K. // J. Fluoresc. 2012. V. 22. P. 745–752. https://doi.org/10.1007/s10895-011-1010-4
  6. Lin H., Hu T., Cheng Y., Chen M., Wang Y. // Laser Photon. Rev. 2018. V. 12. № 6. P. 1700344. https://doi.org/10.1002/lpor.201700344
  7. Nakanishi T., Tanabe S. // J. Light Vis. Env. 2008. V. 32. № 2. P. 93–96. https://doi.org/10.2150/jlve.32.93
  8. Evstropiev S.K., Shashkin A.V., Knyazyan N.B., Manu-kyan G.G., Bagramyan V.V., Timchuk A.V., Stolyaro-va V.L. // J. Non-Cryst. Solids. 2022. V. 580. P. 121386. https://doi.org/10.1016/j.jnoncrysol.2021.121386
  9. Lima S.M., da Cunha Antrade L.H., Silva J.R., Bento A.C., Baesso M.L., Sampaio J.A., de Oliveira Nunes L.A., Guyot Y., Boulon G. // Opt. Express. 2012. V. 20. № 12. P. 12658–12665. https://doi.org/10.1364/OE.20.012658
  10. Chen D., Xiang W., Liang X., Zhong J., Yu H., Ding M., Lu H., Ji Z. // J. Eur. Ceram. Soc. 2015. V. 35. № 3. P. 859–869. https://doi.org/10.1016/j.jeurceramsoc.2014.10.002
  11. Yu H., Zi W., Lan S., Gan S., Zou H., Xu X., Hong G. // Luminescence. 2013. V. 28. № 5. P. 679–684. https://doi.org/10.1002/bio.2415
  12. Qiao J., Xia Z. // J. Appl. Phys. 2021. V. 129. P. 200903. https://doi.org/10.1063/5.0050290
  13. Zhao M., Zhang Q., Xia Z. // Acc. Mater. Res. 2020. V. 1. № 2. P. 137–145. https://doi.org/10.1021/accountsmr.0c00014
  14. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751–767. https://doi.org/10.1107/S0567739476001551
  15. Han J.K., Hannah M.E., Piquette A., Talbot J.B., Mishra K.C., McKittrick J. // J. Lumin. 2015. V. 161. P. 20–24. https://doi.org/10.1016/j/jlumin.2014.12.032
  16. Xu J., Zhao Y., Chen J., Mao Z., Yang Y., Wang D. // Luminescence. 2017. V. 32. № 6. P. 957–963. https://doi.org/10.1002/bio.3277
  17. Ling H., Hu T., Cheng Y., M. Chen, Wang Y. // Laser Photonics Rev. 2018. V. 12. № 6. P.1700344. https://doi.org/10.1002/lpor.201700344
  18. Bispo Jr. A.G., Ceccato D.A., Lima S.A.M., Pires A.M. // RSC Adv. 2017. V. 7. P. 53752–53762. https://doi.org/10.1039/c7ra10494d
  19. Chen J., Liu Y.-G., Liu H., Yang D., Ding H., Fang M., Huang Z. // RSC Adv. 2014. V. 4. P. 18234–18239. https://doi.org/10.1039/C4RA00452C
  20. Kim D., Jeon K.-W., Jin J.S., Kang S.-G., Seo D.-K., Park J.-C. // RSC Adv. 2015. V. 5. P. 105339–105346. https://doi.org/10.1039/C5RA19712K
  21. Ji W., Lee M.-H., Hao L., Xu X., Agathopoulos S., Zheng D., Fang C. // Inorg. Chem. 2015. V. 54. P. 1556–1562. https://doi.org/10.1021/ic502568s
  22. Zhang Q., Wang Q., Wang X., Ding X., Wang Y. // New J. Chem. 2016. V. 40. P. 8549–8555. https://doi.org/10.1039/C6NJ01831A
  23. Sao S.K., Brahme N., Bisen D.P., Tiwari G. // Luminescence. 2016. V. 31. № 7. P. 1364–1371. https://doi.org/10.1002/bio.3116
  24. Craievich A.F., Zanotto E.E., James P.F. // Bull. Minéral. 1983. V. 106. № 1–2. P. 169–184.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (232KB)
3.

Baixar (155KB)
4.

Baixar (74KB)

Declaração de direitos autorais © С.К. Евстропьев, В.Л. Столярова, Н.Б. Князян, Г.Г. Манукян, А.В. Шашкин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies