STABILITY OF Pd/C CATALYSTS IN SOLVENTS FOR ORGANIC SYNTHESIS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, we consider the effect of carbon supports and methods of preparing Pd/C catalysts on the ability of palladium-containing particles to leach out into solution during the interaction of a catalyst with a solvent. The leaching of palladium particles from the substrate surface into pure solvents was studied by high resolution mass spectrometry. It is shown that the type of leached palladium particles formed in the solution depend not only on the solvent, but also on the method of catalyst preparation and on the nature of the support. It has been found that the use of phosphorus-doped carbon (PC) as a support also results in palladium being leached into solution. In addition, the catalytic activity of the catalysts supported on graphite and PC equally decreased both in the Suzuki–Miyaura reaction and in the Mizoroki–Heck reaction.

作者简介

A. Galushko

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: galushkoas@ioc.ac.ru
Russian Federation, 119991, Moscow

V. Ilyushenkova

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Russian Federation, 119991, Moscow

Yu. Burykina

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Russian Federation, 119991, Moscow

R. Shaidullin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Russian Federation, 119991, Moscow

E. Pentsak

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: galushkoas@ioc.ac.ru
Russian Federation, 119991, Moscow

参考

  1. Liu L., Corma A. // Chem. Rev. 2018. V. 118. № 10. P. 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776
  2. Yakovlev V.A., Khromova S.A., Bukhtiyarov V.I. // Russ. Chem. Rev. 2011. V. 80. № 10. P. 911–925. https://doi.org/10.1070/RC2011v080n10ABEH004182
  3. Yin L., Liebscher J. // Chem. Rev. 2007. V. 107. № 1. P. 133–173. https://doi.org/10.1021/cr0505674
  4. Heck R.F., Nolley J.P. // J. Org. Chem. 1972. V. 37. № 14. P. 2320–2322. https://doi.org/10.1021/jo00979a024
  5. Bariwal J., Van der Eycken E. // Chem. Soc. Rev. 2013. V. 42. № 24. P. 9283–9303. https://doi.org/10.1039/c3cs60228a
  6. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2022. V. 122. № 21. P. 16110–16293. https://doi.org/10.1021/acs.chemrev.1c00836
  7. Yakukhnov S.A., Ananikov V.P. // Adv. Synth. Catal. 2019. V. 361. № 20. P. 4781–4789. https://doi.org/10.1002/adsc.201900686
  8. Chen Q.-A., Ye Z.-S., Duan Y., Zhou Y.G. // Chem. Soc. Rev. 2013. V. 42. № 2. P. 497–511. https://doi.org/10.1039/C2CS35333D
  9. Cheung K.P.S., Sarkar S., Gevorgyan V. // Chem. Rev. 2022. V. 122. № 2. P. 1543–1625. https://doi.org/10.1021/acs.chemrev.1c00403
  10. Egorova K.S., Ananikov V.P. // Organometallics. 2017. V. 36. № 21. P. 4071–4090. https://doi.org/10.1021/acs.organomet.7b00605
  11. Eremin D.B., Ananikov V.P. // Coord. Chem. Rev. 2017. V. 346. P. 2–19. https://doi.org/10.1016/j.ccr.2016.12.021
  12. Gruber-Woelfler H., Radaschitz P.F., Feenstra P.W., Haas, W., Khinast J.G. // J. Catal. 2012. V. 286. № 9. P. 30–40. https://doi.org/10.1016/j.jcat.2011.10.013
  13. Chen J.-S., Vasiliev A.N., Panarello A.P., Khinast J.G. // Appl. Catal., A. 2007. V. 325. № 1. P. 76–86. https://doi.org/10.1016/j.apcata.2007.03.010
  14. Шмидт А.Ф., Маметова Л.В. // Кинетика и катализ. 1996. Т. 37. № 3. С. 431–433.
  15. Köhler K., Kleist W., Prockl S.S. // Inorg. Chem. 2007. V. 46. № 6. P. 1876–1883. https://doi.org/10.1021/ic061907m
  16. Gnad C., Abram A., Urstöger A., Weigl F., Schuster M., Köhler K. // ACS Catal. 2020. V. 10. № 11. P. 6030–6041. https://doi.org/10.1021/acscatal.0c01166
  17. Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. № 4. P. 2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443
  18. Albero J., Vidal A., Migani A., Concepción P., Blancafort L., García H. // ACS Sustainable Chem. Eng. 2019. V. 7. № 1. P. 838–846. https://doi.org/10.1021/acssuschemeng.8b04462
  19. Feng L., Qin Z., Huang Y., Peng K., Wang F., Yan Y., Chen Y. // Sci. Total Environ. 2020. V. 698. 134239. https://doi.org/10.1016/j.scitotenv.2019.134239
  20. Soomro S.S., Ansari F.L., Chatziapostolou K., Köhler K. // J. Catal. 2010. V. 273. № 2. P. 138–146. https://doi.org/10.1016/j.jcat.2010.05.007
  21. Gaikwad A.V., Holuigue A., Thathagar M.B., ten Elshof J.E., Rothenberg G. // Chem. Eur. J. 2007. V. 13. № 24. P. 6908–6913. https://doi.org/10.1002/chem.200700105
  22. Шмидт А.Ф., Аль-Халайка А., Смирнов В.В., Курохтина А.А. // Кинетика и Катализ. 2008. Т. 49. № 5. С. 669–674. https://doi.org/10.1134/S0023158408050078
  23. Galushko A.S., Gordeev E.G., Ananikov V.P. // Langmuir. 2018. V. 34. № 51. P. 15739–15748. https://doi.org/10.1021/acs.langmuir.8b03417
  24. Yakukhnov S.A., Pentsak E.O., Galkin K.I., Mironen-ko R.M., Drozdov V.A., Likholobov V.A., Ananikov V.P. // ChemCatChem. 2018. V. 10. № 8. P. 1869–1873. https://doi.org/10.1002/cctc.201700738
  25. Sherwood J., Clark J.H., Fairlamb I.J.S., Slattery J.M. // Green Chem. 2019. V. 21. № 9. P. 2164–2213. https://doi.org/10.1039/C9GC00617F
  26. Denisova E.A., Eremin D.B., Gordeev E.G., Tsedilin A.M., Ananikov V.P. // Inorg. Chem. 2019. V. 58. P. 12218–12227. https://doi.org/10.1021/acs.inorgchem.9b01630
  27. Pentsak E.O., Kashin A.S., Polynski M.V., Kvashnina K.O., Glatzel P., Ananikov V.P. // Chem. Sci. 2015. V. 6. P. 3302–3313. https://doi.org/10.1039/C5SC00802
  28. Boyko D.A., Pentsak E.O., Cherepanova V.A., Anani-kov V.P. // Sci. Data. 2020. V. 7. 101. https://doi.org/10.1038/s41597-020-0439-1
  29. Pentsak E.O., Galushko A.S., Cherepanova V.A., Ananikov V.P. // Nanomaterials. 2021. V. 11. № 10. 2599. https://doi.org/10.3390/nano11102599
  30. Eremin D.B., Galushko A.S., Boiko D.A., Pentsak E.O., Chistyakov I.V., Ananikov V.P. // J. Am. Chem. Soc. 2022. V. 144. № 13. P. 6071–6079. https://doi.org/10.1021/jacs.2c01283
  31. Arvela R.K., Leadbeater N.E., Collins M.J. // Tetrahedron. 2005. V. 61. P. 9349–9355. https://doi.org/10.1016/j.tet.2005.07.063
  32. Boiko D.A., Kozlov K.S., Burykina J.V., Ilyushenkova V.V., Ananikov V.P. // J. Am. Chem. Soc. 2022. V. 144. № 32. P. 14590–14606. https://doi.org/10.1021/jacs.2c03631
  33. Okotrub A.V., Kanygin M.A., Koroteev V.O., Stolyarova S.G., Gorodetskiy D.V., Fedoseeva Yu.V., Asanov I.P., Bulusheva L.G., Vyalikh A. // Synth. Met. 2019. V. 248. P. 53–58. https://doi.org/10.1016/j.synthmet.2019.01.005
  34. Krstić V., Ewels C.P., Wågberg T., Ferreira M.S., Jans-sens A.M., Stéphan O., Glerup M. // ACS Nano. 2010. V. 4. № 9. P. 5081–5086. https://doi.org/10.1021/nn1009038

补充文件

附件文件
动作
1. JATS XML
2.

下载 (23KB)
3.

下载 (111KB)
4.

下载 (23KB)
5.

下载 (25KB)

版权所有 © А.С. Галушко, В.В. Ильюшенкова, Ю.В. Бурыкина, Р.Р. Шайдуллин, Е.О. Пенцак, 2023

##common.cookie##