CONTROLLED RADICAL POLYMERIZATION OF LAURYL METHACRYLATE IN THE BASE SYNTHETIC POLYALPHAOLEFIN OIL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Controlled radical polymerization of lauryl methacrylate in the base polyalphaolefin oil was performed first in the presence of 2-cyano-2-propyl dodecyl trithiocarbonate. It has been shown that polymerization proceeds to high monomer conversions and leads to the formation of a polymer with a narrow molecular weight distribution. At the same time, the reaction mixtures retain their transparency after polymerization is completed. The synthesized polymers have a thickening ability, which naturally increases with an increase in their number average molecular weight.

About the authors

E. V. Chernikova

M.V. Lomonosov Moscow State University, Faculty of Chemistry; Mendeleev University of Chemical Technology, Higher Chemical College of the Russian Academy of Sciences; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: chernikova_elena@mail.ru
Russian Federation, 119991, Moscow; Russian Federation, 125047, Moscow; Russian Federation, 119991, Moscow

M. S. Pavlova

Mendeleev University of Chemical Technology, Higher Chemical College of the Russian Academy of Sciences

Email: chernikova_elena@mail.ru
Russian Federation, 125047, Moscow

A. V. Plutalova

M.V. Lomonosov Moscow State University, Faculty of Chemistry

Email: chernikova_elena@mail.ru
Russian Federation, 119991, Moscow

E. A. Litmanovich

M.V. Lomonosov Moscow State University, Faculty of Chemistry

Email: chernikova_elena@mail.ru
Russian Federation, 119991, Moscow

A. L. Maksimov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: chernikova_elena@mail.ru
Russian Federation, 119991, Moscow

References

  1. Vinogradov A.A., Nifant’ev I.E., Vinogradov A.A., Borisov R.S., Ivchenko P.V. // Mendeleev Commun. 2021. V. 31. P. 709–711. https://doi.org/10.1016/j.mencom.2021.09.039
  2. Grishin D.F. // Pet. Chem. 2017. V. 57. № 10. P. 813–825. https://doi.org/10.1134/S0965544117100097
  3. Danilov A.M., Bartko R.V., Antonov S.A. // Pet. Chem. 2021. V. 61. № 1. P. 35–42. https://doi.org/10.1134/S0965544121010035
  4. Yang F., Zhao Y., Sjöblom J., Li C., Paso K.G. // J. Dispers. Sci. Technol. 2015. V. 36. № 2. P. 213–225. https://doi.org/10.1080/01932691.2014.901917
  5. Kazantsev O.A., Volkova G.I., Prozorova I.V., Litvinets I.V., Orekhov D.V., Samodurova S.I., Kamorin D.M., Moi-kin A.A., Medzhibovskii A.S. // Pet. Chem. 2016. V. 56. № 1. P. 68–72. https://doi.org/10.1134/S0965544115060079
  6. Akhmedov A.I., Ibragimova R.I. // Chem. Technol. Fuels Oils. 1991. V. 27. № 3. P. 160–162. https://doi.org/10.1007/BF00725366
  7. Akhmedov A.I., Levshina A.M. // Chem. Technol. Fuels Oils. 1986. V. 22. № 6. 300–301. https://doi.org/10.1007/BF00719560
  8. Akhmedov A.I., Buniyat-Zade I.A. // Chem. Technol. Fuels Oils. 1993. V. 29. № 4. P. 207–212. https://doi.org/10.1007/BF00727395
  9. Jukic A., Vidovic E., Janovic Z. // Chem. Technol. Fuels Oils. 2007. V. 43. № 5. P. 386–394. https://doi.org/10.1007/s10553-007-0068-9
  10. Kazantsev O.A., Samodurova S.I., Sivokhin A.P., Moikin A.A., Medzhibovskii A.S. // Pet. Chem. 2014. V. 54. № 1. P. 72–77. https://doi.org/10.1134/S0965544114010137
  11. Kazantsev O.A., Samodurova S.I., Kamorin D.M., Sivokhin A.P., Moikin A.A., Medzhibovskii A.S. // Pet. Chem. 2014. V. 54. № 6. P. 473–476. https://doi.org/10.1134/S0965544114060073
  12. Simanskaya K.Yu., Grishin I.D., Pavlovskaya M.V., Grishin D.F. // Polym. Sci., Ser. B. 2019. V. 61. № 2. P. 155–162. https://doi.org/10.1134/S1560090419020118
  13. Simanskaya K.Yu., Grishin I.D., Grishin D.F. // Russ. J. Appl. Chem. 2016. V. 89. № 7. P. 1119−1125. https://doi.org/10.1134/S1070427216070119
  14. Череп Е.И., Лачинов М.Б., Зубов В.П., Кабанов В.А. // Высокомолек. соед. Сер. Б. 1986. Т. 28. № 3. С. 165–169.
  15. Королев Б.А., Лачинов М.Б., Древаль В.Е., Зубов В.П., Виноградов Г.В., Кабанов В.А. // Высокомолек. соед. Сер. А. 1983. Т. 25. № 11. С. 2430–2434.
  16. Лачинов М.Б., Королев Б.А., Древаль В.Е., Череп Е.И., Зубов В.П., Виноградов Г.В., Кабанов В.А.// Высокомолек. соед. Сер. А. 1982. Т. 24. № 10. С. 2220–2226.
  17. Траченко Д.В., Лачинов М.Б. // Высокомолек. соед. Сер. А. 1996. Т. 38. № 7. С. 1093–1098.
  18. Траченко Д.В., Лачинов М.Б. // Высокомолек. соед. Сер. А. 1997. Т. 39. № 1. С. 109–115.
  19. Большакова Е.А., Ширшин К.В, Мойкин А.А., Меджибовский А.С., Ожогина О.Р., Шишулина А.В., Лазарева Л.Г. // Пластические массы. 2020. № 11–12. С. 45–47. https://doi.org/10.35164/0554-2901-2020-11-12-45-47
  20. Чугунов М.А., Рыбин А.Г., Меджибовский А.С., Колокольников А.С., Дементьев А.В. Способ получения полиметакрилатной депрессорной присадки и депрессорная присадка, полученная этим способом. Патент РФ № 2402571. 2010.
  21. Рамазанов К.Р. Способ получения полиалкилметакрилатных присадок и установка для его осуществления. Патент РФ № 2466146. 2011.
  22. Controlled and living polymerizations. Müller A.H.E., Matyjaszewski K. (Eds.). Weinheim: Wiley-VCH, 2009. 612 p.
  23. RAFT polymerization. Methods, synthesis and applications. Moad G., Rizzardo E. (Eds.). V. 1. Weinheim: Wiley-VCH, 2022. 1240 p.
  24. Grishin D.F., Grishin I.D. // Russ. Chem. Rev. 2021. V. 90. № 2. P. 231–264. https://doi.org/10.1070/RCR4964
  25. Skvortsov I.Yu., Varfolomeeva L.A., Kuzin M.S., Va-shchenko A.F., Chernikova E.V., Toms R.V., Kulichi-khin V.G. // Mendeleev Commun. 2022. V. 32. P. 652–654. https://doi.org/10.1016/j.mencom.2022.09.028
  26. Brodu N., Talouba I., Lahoud I., Balland L., Mouhab N. // Chem. Pap. 2021. V. 75. № 4. P. 1607–1617. https://doi.org/10.1007/s11696-020-01412-x
  27. György C., Verity C., Neal T.J., Rymaruk M.J., Cornel E.J., Smith T., Growney D.J., Armes S.P. // Macromolecules. 2021. V. 54. № 20. P. 9496−9509. https://doi.org/10.1021/acs.macromol.1c01528
  28. Derry M.J., Fielding L.A., Warren N.J., Mable C.J., Smith A.J., Mykhaylyk O.O., Armes S.P. // Chem. Sci. 2016. V. 7. № 8. P. 5078–5090. https://doi.org/10.1039/C6SC01243D
  29. Docherty P.J., Derry M.J., Armes S.P. // Polym. Chem. 2019. V. 10. № 5. P. 603–611. https://doi.org/10.1039/C8PY01584H
  30. Matkovskii P.E., Startseva G.P., Churkina V.Ya., Knerel’- man E.I., Davydova G.I., Vasil’eva L.P., Yarullin R.S. // Polym. Sci. Ser. A. 2008. V. 50. № 11. P. 1175–1186. https://doi.org/10.1134/S0965545X08110072
  31. Chernikova E.V., Sivtsov E.V. // Polym. Sci. Ser. B. 2017. V. 59. № 2. P. 117–146. https://doi.org/10.1134/S1560090417020038

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (70KB)
3.

Download (123KB)
4.

Download (60KB)

Copyright (c) 2023 Е.В. Черникова, М.С. Павлова, А.В. Плуталова, Е.А. Литманович, А.Л. Максимов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».