CURRENT TRENDS IN THE SYNTHESIS OF INORGANIC AND ORGANOELEMENT PHOSPHORUS- AND SULFUR-CONTAINING POLYMERS. A REVIEW

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The analysis of the literature data on the set of reactions for the production of macromolecules with a high content of phosphorus and sulfur is carried out, and the main approaches allowing to involve these elements in the composition of polymers and polymer materials, considering the fundamental principles of green chemistry, are considered. The methods leading to the formation of functional polymers under mild conditions with minimal energy consumption from external sources necessary for the synthesis, which can become new growth points of green industrial technologies, are considered. Particular attention is paid to the issues of synthesis of polyphosphazenes and polyphosphoesters for biomedical purposes, as well as the inverse vulcanization reaction with the formation of polymers that are used in sorption wastewater treatment, the creation of current sources and IR optics.

Авторлар туралы

N. Tarasova

Dmitry Mendeleev University of Chemical Technologies

Email: vv1992@yandex.ru
Russian Federation, 125047, Moscow

E. Krivoborodov

Dmitry Mendeleev University of Chemical Technologies

Хат алмасуға жауапты Автор.
Email: vv1992@yandex.ru
Russian Federation, 125047, Moscow

Y. Mezhuev

Dmitry Mendeleev University of Chemical Technologies; A.N. Nesmeyanov Institute of Organoelement compounds of Russian Academy of Sciences

Email: vv1992@yandex.ru
Russian Federation, 125047, Moscow; Russian Federation, 119334, Moscow

Әдебиет тізімі

  1. Rockström J., Steffen W., Noone K., Persson A., Stuart Chapin F., Lambin E., Lenton T., Scheffer M., Folke C., Schellnhuber H., Nykvist B., de Wit C., Hughes T., Van der Leeuw S., Rodhe H., Sörlin S., Snyder P., Costanza R., Svedin U., Falkenmark M., Karlberg L., Corell R., Fabry V., Hansen J., Walker B., Liverman D., Richardson K., Crutzen P., Foley J. // Nature. 2009. V. 461. P. 472–475. https://doi.org/10.1038/461472a
  2. Metson G., Brownlie W., Spears B. // npj Urban Sustain. 2022. V. 2. № 1. P. 30. https://doi.org/10.1038/s42949-022-00076-8
  3. Karunarathna M., Lauer M., Thiounn T., Smith R., Tennyson A. // J. Mater. Chem. A. 2019. V. 7. P. 15683–15690. https://doi.org/10.1039/C9TA03222C
  4. Tarasova N.P., Zanin A.A., Krivoborodov E.G., Mezhu-ev Ya.O. // RSC Adv. 2021. V. 11. P. 9008–9020. https://doi.org/10.1039/D0RA10507D
  5. Газпром переработка // Доступно по: https://pererabotka.gazprom.ru/press/news/2019/10/889/. Ссылка активна на 23.08.2023 г.
  6. Xiao P., Chen W., Wang X. // Adv. Energy Mater. 2015. V. 5. P. 1500985. https://doi.org/10.1002/aenm.201500985
  7. Chen L., Wang Y.-Z. // Polym. Adv. Technol. 2010. V. 21. P. 1–26. https://doi.org/10.1002/pat.1550
  8. Ansari S.A., Khan Z., Ansari M.O., Cho M. // RSC Adv. 2016. V. 6. P. 44616–44629. https://doi.org/10.1039/C6RA06145A
  9. Cisse L., Mrabet T. // Phosphorus Res. Bull. 2004. V. 15. P. 21–25. https://doi.org/10.3363/prb1992.15.0_21
  10. Tarasova N.P., Smetannikov Yu.V. // Dokl. Chem. 2011. V. 437. № 1. P. 53–56. https://doi.org/10.1134/S0012500811030049
  11. Sukhov B., Malysheva S., Vakul’skaya T., Tirsky V., Martynovich E., Smetannikov Y., Tarasova N. // Arkivoc. 2003. V. 13. P. 196–204. https://www.arkat-usa.org/get-file/19755
  12. Тарасова Н.П., Сметанников Ю.В., Артемкина И.М., Лавров И.А., Синайский М.А., Ермаков В.И. // ДАН. 2006. V. 410. № 5. P. 640.
  13. Tarasova N.P., Smetannikov Yu.V., Artemkina I.M., Vilesov A.S. // Phosphorus, Sulfur Silicon Relat. Elem. 2008. V. 183. № 2–3. P. 586–593. https://doi.org/10.1080/10426500701765004
  14. Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Za-nin A.A. // Pure Appl. Chem. 2009. V. 81. № 11. P. 2115–2122. https://doi.org/10.1351/PAC-CON-08-10-14
  15. Tarasova N.P., Zanin A.A., Smetannikov Yu.V., Vile-sov A.S. // C. R. Chim. 2010. V. 13. № 8–9. P. 1028–1034. https://doi.org/10.1016/j.crci.2010.05.013
  16. Tarasova N.P., Smetannikov Yu.V., Zanin A.A. // Dokl. Chem. 2013. V. 449. P. 111–113. https://doi.org/10.1134/S0012500813040010
  17. Tarasova N.P., Zanin A.A. // Pure Appl. Chem. 2019. V. 91. № 4. P. 671–686. https://doi.org/10.1515/pac-2018-0716
  18. Teptereva G.A., Pakhomov S.I., Chetvertneva I.A., Karimov E.H., Egorov M.P., Movsumzade E.M., Evstigne-ev E.I., Vasiliev A.V., Sevastyanova M.V., Voloshin A.I., Nifantyev N.E., Nosov V.V., Dokichev V.A., Baba-ev E.R., Rogovina S.Z., Berlin A.A., Fakhreeva A.V., Baulin O.A., Kolchina G.Y., Voronov M.S., Starove-rov D.V., Kozlovsky R.A., Tarasova N.P., Zanin A.A., Krivoborodov E.G., Karimov O.K., Flid V.R., Logino-va M.E., Kozlovsky I.A. // ChemChemTech. 2021. V. 64. P. 4–121. https://doi.org/10.6060/ivkkt.20216409.6465
  19. Tarannum A., Muvva C., Mehta A., Rao J.R., Fathi-ma N.N. // RSC Adv. 2016. V. 6. P. 4022–4033. https://doi.org/10.1039/C5RA22441A
  20. Steinrück H.-P., Wasserscheid P. // Catal. Lett. 2015. V. 145. P. 380–397. https://doi.org/10.1007/s10562-014-1435-x
  21. Welton T. // Coord. Chem. Rev. 2004. V. 248. № 21–24. P. 2459–2477. https://doi.org/10.1016/j.ccr.2004.04.015
  22. Gaur A., Avula N., Balasubramanian S. // J. Phys. Chem. B. 2020. V. 124. № 40. P. 8844−8856. https://doi.org/10.1021/acs.jpcb.0c04939
  23. Tarasova N.P., Zanin A.A., Krivoborodov E.G. // Dokl. Phys. Chem. 2022. V. 503. P. 39–44. https://doi.org/10.1134/S0012501622040017
  24. Jagadeeswara Rao Ch., Venkatesan K.A., Tata B.V.R., Nagarajan K., Srinivasan T.G., Vasudeva Rao P.R. // Radiat. Phys. Chem. 2011. V. 80. № 5. P. 643–649. https://doi.org/10.1016/j.radphyschem.2011.01.012
  25. Tarábek P., Liu S., Haygarth K., Bartels D.M. // Radiat. Phys. Chem. 2009. V. 78. 168–172. https://doi.org/10.1016/j.radphyschem.2008.11.006
  26. Yuan L., Peng J., Xu L., Zhai M., Li J., Wei G. // Radiat. Phys. Chem. 2009. V. 78. P. 1133–1136. https://doi.org/10.1016/j.radphyschem.2009.07.003
  27. Dhiman S.B., Goff G.S., Runde W., LaVerne J.A. // J. Nucl. Mater. 2014. V. 453. № 1–3. P. 182–187. https://doi.org/10.1016/j.jnucmat.2014.06.056
  28. Shkrob I.A., Marin T., Cheremisinov S.D., Wishart J. // J. Phys. Chem. B. 2011 V. 115. № 37. P. 10927–10942. https://doi.org/10.1021/jp206579j
  29. Shkrob I.A., Marin T.W., Cheremisinov S.D., Wishart J. // J. Phys. Chem. B. 2011. V. 115. № 14. P. 3872–3888. https://doi.org/10.1021/jp2003062
  30. Ao Y., Yuan W., Yu T., Peng J., Li J., Zhai M., Zhao L. // Phys. Chem. Chem. Phys. 2015. V. 17 № 5. P. 3457–3462. https://doi.org/10.1039/c4cp04294h
  31. Guleria A., Singh A.K., Adhikari S., Sarkar S.K. // Dalton Trans. 2014. V. 49. P. 609–625. https://doi.org/10.1039/C3DT51265G
  32. Mincher B.J., Wishart J.F. // Solvent Extr. Ion Exch. 2014. V. 32. № 6. P. 563–583. https://doi.org/10.1080/07366299.2014.925687
  33. Ao Y., Peng J., Yuan L., Cui Z., Li C., Li J., Zhai M. // Dalton Trans. 2013. V. 42. № 12. P. 4299–4305. https://doi.org/10.1039/C2DT32418K
  34. Le Rouzo G., Lamouroux C., Dauvois V., Dannoux A., Legand S., Durand D., Moisy P., Moutiers G. // Dalton Trans. 2009. V. 38. № 31. P. 6175–6184. https://doi.org/10.1039/B903005K
  35. Tarasova N.P., Smetannikov Y.V., Polyiansky D.E. Synthesis of Polymeric Forms of Phosphorus. In: Green Industrial Applications of Ionic Liquids. Rogers R.D., Seddon K.R., Volkov S. (Eds.). Kluwer Academic Publishers, Boston, 2003. https://doi.org/10.1007/978-94-010-0127-4_32
  36. Trofimov B.A., Malysheva S.F., Gusarova N.K., Belogorlova N.A., Kuimov V.A., Sukhov B.G., Tarasova N.P., Smetannikov Y.V., Vilesov A.S., Sinegovskaya L.M., Arsent’ev K.Y., Likhoshvai E.V. // Dokl. Chem. 2009. V. 427. P. 153–155. https://doi.org/10.1134/S0012500809070027
  37. Yakhvarov D.G., Gorbachuk E.V., Kagirov R.M., Sinyashin O.G. // Russ. Chem. Bull. 2012. V. 61. P. 1300–1312. https://doi.org/10.1007/s11172-012-0176-5
  38. Hart M., White E., Chen J., McGilvery C., Pickard C., Michaelides A., Sella A., Shaffer M., Salzmann C. // Angew. Chem. Int. Ed. 2017. V. 56. P. 8144–8148. https://doi.org/10.1002/anie.201703585
  39. Tarasova N., Zanin A., Sobolev P., Ivanov A. // Phosphorus, Sulfur Silicon Relat. Elem. 2022. V. 197. № 5–6. P. 608–609. https://doi.org/10.1080/10426507.2021.2011885
  40. Deng M., Kumbar S.G., Wan Y., Toti U.S., Allcock H.R., Laurencin C.T. // Soft Matter. 2010. V. 6. № 14. P. 3119–3132. https://doi.org/10.1039/B926402G
  41. Andrianov A., Langer R. // J. Controlled Release. 2021. V. 329. P. 299–315. https://doi.org/10.1016/j.jconrel.2020.12.001
  42. Chernysheva A.I., Esin A.S., Soldatov M.A., Bredov N.S., Kireev V.V., Oberemok V.V., Sirotin I.S., Gorlov M.V. // IOP Conf. Ser.: Mater. Sci. Eng. 2021. V. 1117. P. 012027. https://doi.org/10.1088/1757-899X/1117/1/012027
  43. Allcock H.R. // Soft Matter. 2012. V. 8. № 29. P. 7521–7532. https://doi.org/10.1039/C2SM26011E
  44. Chen F., Teniola O.R., Ogueri K.S., Laurencin C.T. // Regen. Eng. Transl. Med. 2022. https://doi.org/10.1007/s40883-022-00278-7
  45. Strasser P., Teasdale I. // Molecules. 2020. V. 25. P. 1716. https://doi.org/10.3390/molecules25071716
  46. Rothemund S., Teasdale I. // Chem. Soc. Rev. 2016. V. 45. P. 5200–5215. https://doi.org/10.1039/C6CS00340K
  47. Ngo D.C., Rutt J.S., Allcock H.R. // J. Am. Chem. Soc. 1991. V. 113. № 13. P. 5075–5076. https://doi.org/10.1021/ja00013a061
  48. Allcock H.R., Gardner J.E., Smeltz K.M. // Macromo-lecules. 1975. V. 8. № 1. P. 36–42. https://doi.org/10.1021/ma60043a008
  49. Carriedo G., Garcia Alonso F.J., Gomez-Elipe P., Ignacio Fidalgo J., Garcia Alvarez J., Presa-Soto A. // Chem. Eur. J. 2003. V. 9. № 16. P. 3833–3836. https://doi.org/10.1002/chem.200304750
  50. Gleria M., Jaeger R. Polyphosphazenes: A Review. In: New Aspects in Phosphorus Chemistry V. Topics in Current Chemistry. Majoral J.P. (Ed.). V. 250. Springer Berlin, Heidelberg, 2005. P. 165–251. https://doi.org/10.1007/b100985
  51. Allen C.W., Hneihen A.S. // Phosphorus, Sulfur Silicon Relat. Elem. 1999. V. 144. № 1. P. 213–216. https://doi.org/10.1080/10426509908546220
  52. Wang B. // Macromolecules. 2005. V. 38. № 2. P. 643–645. https://doi.org/10.1021/ma0489772
  53. Suárez Suárez S., Presa Soto D., Carriedo G., Presa Soto A., Staubitz A. // Organometallics. 2012. V. 31. № 7. P. 2571–2581. https://doi.org/10.1021/om201012g
  54. Andrianov A.K., Chen J., LeGolvan M.P. // Macromo-lecules. 2004. V. 37. № 2. P. 414–420. https://doi.org/10.1021/ma0355655
  55. Wisian-Neilson P., Neilson R.H. Synthesis and Modification of Poly(alkyl/arylphosphazenes). In: Polyphosphazenes in Biomedicine, Engineering, and Pioneering Synthesis. Andrianov A.K., Allcock S.H. (Eds.). V. 1298. American Chemical Society: Washington, DC, USA, 2018. P. 167–181. https://doi.org/10.1021/bk-2018-1298.ch008
  56. Chistyakov E.M., Tupikov A.S., Buzin M.I., Borisov R.S., Kireev V.V. // Mater. Chem. Phys. 2019. V. 223. P. 353–359. https://doi.org/10.1016/j.matchemphys.2018.11.008
  57. Chistyakov E.M., Filatov S.N., Kireev V.V., Prudskov B.M., Chetverikova A.I., Chuev V.P., Borisov R.S. // Polym. Sci. Ser. B. 2013. V. 55. P. 355–359. https://doi.org/10.1134/S156009041306002X
  58. Chistyakov E.M., Panfilova D.V., Kireev V.V., Volkov V.V., Bobrov M.F. // J. Mol. Struct. 2017. V. 1148. P. 1–6. https://doi.org/10.1016/j.molstruc.2017.07.005
  59. Terekhov I.V., Filatov S.N., Chistyakov E.M., Borisov R.S., Kireev V.V. // Russ. J. Appl. Chem. 2013. V. 86. P. 1600–1604. https://doi.org/10.1134/S1070427213100200
  60. Bobrov M.F., Buzin M.I., Primakov P.V., Chistyakov E.M. // J. Mol. Struct. 2020. V. 1208. P. 127896. https://doi.org/10.1016/j.molstruc.2020.127896
  61. Chistyakov E., Yudaev P., Nelyubina Y. // Nanomaterials. 2022. V. 12. № 13. P. 2268. https://doi.org/10.3390/nano12132268
  62. Xu H., Zhang X., Liu D., Yan C., Chen X., Hui D., Zhu Y. // Compos. B. Eng. 2016. V. 93. P. 244–251. https://doi.org/10.1016/j.compositesb.2016.03.033
  63. Strakhov I.S., Rodnaya A.I., Mezhuev Ya.O., Korshak Yu.V., Vagramyan T.A. // Russ. J. Appl. Chem. 2014. V. 87. № 12. P. 1918–1922. https://doi.org/10.1134/S1070427214120209
  64. Tian H., Tang Z., Zhuang X., Chen X., Jing X. // Prog. Polym. Sci. 2012. V. 37. № 2. P. 237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004
  65. Yilmaz Z.E., Jérôme C. // Macromol. Biosci. 2016. V. 16. P. 1745–1761. https://doi.org/10.1002/mabi.201600269
  66. Zhang F., Zhang S., Pollack S.F., Li R., Gonzalez A.M., Fan J., Zou J., Leininger S.E., Pavia-Sanders A., Johnson R., Nelson L.D., Raymond J.E., Elsabahy M., Hughes D.M.P., Lenox M.W., Gustafson T.P., Wo-oley K.L. // J. Am. Chem. Soc. 2015. V. 137. № 5. P. 2056–2066. https://doi.org/10.1021/ja512616s
  67. Percec S., Natansohn A., Dima M. // Angew. Makromol. Chem. 1979. V. 80. № 1. P. 143–148. https://doi.org/10.1002/apmc.1979.050800111
  68. Pelosi C., Tinè M.R., Wurm F.R. // Eur. Polym. J. 2020. V. 141. P. 110079. https://doi.org/10.1016/j.eurpolymj.2020.110079
  69. Iwasaki Y., Yamaguchi E. // Macromolecules. 2010. V. 43. №. 6. P. 2664–2666. https://doi.org/10.1021/ma100242s
  70. Yolsal U., Horton T.A.R., Wang M., Shaver M.P. // Prog. Polym. Sci. 2020. V. 111. P. 101313. https://doi.org/10.1016/j.progpolymsci.2020.101313
  71. Henke H., Brüggemann O., Teasdale I. // Macromol. Rapid Commun. 2017. V. 38. P. 1600644. https://doi.org/10.1002/marc.201600644
  72. Becker G., Wurm F.R. // Chem. Soc. Rev. 2018. V. 47. № 20. P. 7739–7782. https://doi.org/10.1039/C8CS00531A
  73. Nifant’ev I.E., Ivchenko P.V. // Int. J. Mol. Sci. 2022. V. 23. P. 14857. https://doi.org/10.3390/ijms232314857
  74. Dirauf M., Muljajew I., Weber C., Schubert U.S. // Prog. Polym. Sci. 2022. V. 129. P. 101547. https://doi.org/10.1016/j.progpolymsci.2022.101547
  75. Rheinberger T., Ankone M., Grijpma D., Wurm F.R. // Eur. Polym. J. 2022. V. 180. P. 111607. https://doi.org/10.1016/j.eurpolymj.2022.111607
  76. Clément B., Grignard B., Koole L., Jérôme C., Lecomte P. // Macromolecules. 2012. V. 45. № 11. P. 4476–4486. https://doi.org/10.1021/ma3004339
  77. Zhang S., Li A., Zou Z.J., Lin L.Y., Wooley K.L. // ACS Macro Letters. 2012. V. 1. № 2. P. 328–333. https://doi.org/10.1021/mz200226m
  78. Huang X., Huang X.J., Yu A.D., Wang C., Dai Z.W., Xu Z.K. // Macromol. Chem. Phys. 2011. V. 212. P. 272–277. https://doi.org/10.1002/macp.201000439
  79. Chen C., Xu H., Qian Y.C., Huang X.J. // RSC Adv. 2015. V. 5. № 21. P. 15909–15915. https://doi.org/10.1039/C4RA14012E
  80. Strzelecka K., Piotrowska U., Sobczak M., Oledzka E. // Int. J. Mol. Sci. 2023. V. 24. P. 1053. https://doi.org/10.3390/ijms24021053
  81. Balzade Z., Sharif F., Ghaffarian Anbaran S.R. // Macromolecules. 2022. V. 55. № 16. P. 6938−6972. https://doi.org/10.1021/acs.macromol.2c00594
  82. Du X., Sun Y., Zhang M., He J., Ni P. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 16. P. 13939–13949. https://doi.org/10.1021/acsami.7b02281
  83. Vanslambrouck S., Riva R., Ucakar B., Préat V., Gagliardi M., Molin D.G.M., Lecomte P., Jérôme C. // Molecules. 2021. V. 26. P. 1750. https://doi.org/10.3390/molecules26061750
  84. Xiong C., Cao S., Wang Y., Wang X., Long S., Zhang G., Yang J. // J. Coat. Technol. Res. 2019. V. 16. P. 643–650. https://doi.org/10.1007/s11998-018-00172-4
  85. Cetina-Mancilla E., Reyes-García G., Rodríguez-Molina M, Zolotukhin M.G., Vivaldo-Lima E., González-Díaz M.O., Ramos-Ortiz G. // Eur. Polym. J. 2023. V. 184. P. 111800. https://doi.org/10.1016/j.eurpolymj.2022.111800
  86. Firdaus M., Montero de Espinosa L., Meier M.A.R. // Macromolecules. 2011. V. 44. № 18. P. 7253–7262. https://doi.org/10.1021/ma201544e
  87. Guo Y., Li Q., Lv L., Zhou P., Wang J., Wu Z., Wang G. // Polymer. 2020. V. 186. P. 122049. https://doi.org/10.1016/j.polymer.2019.122049
  88. Watanabe S., Oyaizu K. // ACS Appl. Polym. Mater. 2021. V. 3. № 9. P. 4495–4503. https://doi.org/10.1021/acsapm.1c00536
  89. Besse J., Chasen S., Claborn T., Collins A., Darpel A., Fatta A., Ghanim R., Kanaan G., Lukyanchuk A., Nelson T., Ray J., Smith A., Spagnola J., Veazey S., Womack L., Wells M., Panth N., Parkin S., Watson M. // J. Polym. Sci. 2022. V. 60. № 12. P. 1918–1923. https://doi.org/10.1002/pol.20220115
  90. Zhang T., Fu X., Leng H., Liu S., Long S., Yang J., Zhang G., Wang X., Yang J. // Langmuir. 2022. V. 38. № 36. P. 10975–10985. https://doi.org/10.1021/acs.langmuir.2c01381
  91. Abbasi A., Nasef M.M., Yahya W.Z.N. // Green Mater. 2020. V. 8. № 4. P. 172–180. https://doi.org/10.1680/jgrma.19.00053
  92. Ghumman A.S.M., Shamsuddin R., Nasef M.M., Krivo-borodov E.G., Ahmad S., Zanin A.A., Mezhuev Ya.O., Abbasi A. // Polymers. 2021. V. 13. P. 4040. https://doi.org/10.3390/polym13224040
  93. Boyd D.A. // Angew. Chem. Int. Ed. 2016. V. 55. № 50. P. 15486–15502. https://doi.org/10.1002/anie.201604615
  94. Griebel J.J., Glass R.S., Char K., Pyun J. // Progr. Polym. Sci. 2016. V. 58. P. 90–125. https://doi.org/10.1016/j.progpolymsci.2016.04.003
  95. Vidal F., Jäkle F. // Angew. Chem. Int. Ed. 2019. V. 58. № 18. P. 5846–5870. https://doi.org/10.1002/anie.201810611
  96. Nguyen T. // Adv. Synth. Catal. 2017. V. 359. № 7. P. 1066–1130. https://doi.org/10.1002/adsc.201601329
  97. Zhang Y., Glass R.S., Char K., Pyun J. // Polym. Chem. 2019. V. 10. № 30. P. 4078–4105. https://doi.org/10.1039/C9PY00636B
  98. Kang K.S., Iyer K.A., Pyun J. // Chem. Eur. J. 2022. V. 28. № 35. e202200115. https://doi.org/10.1002/chem.202200115
  99. Smith J.A., Wu X., Berry N.G., Hasell T. // J. Polym. Sci. Part A: Polym. Chem. 2018. V. 56. P. 1777–1781. https://doi.org/10.1002/pola.29067
  100. Diez S., Hoefling A., Theato P., Pauer W. // Polymers. 2017. V. 9. P. 59. https://doi.org/10.3390/polym9020059
  101. Wu X., Smith J.A., Petcher S., Zhang B., Parker D.J., Griffin J.M., Hasell T. // Nat. Commun. 2019. V. 10. P. 647. https://doi.org/10.1038/s41467-019-08430-8
  102. Chalker J.M., Mann M., Worthington M.J.H., Esdai-le L.J. // Org. Mater. 2021. V. 3. № 2. P. 362–373. https://doi.org/10.1055/a-1502-2611
  103. Parker D.J., Jones H.A., Petcher S., Cervini L., Griffin J.M., Akhtar R., Hasell T. // Mater. Chem. A. 2017. V. 5. № 23. P. 11682–11692. https://doi.org/10.1039/C6TA09862B
  104. Thielke M.W., Bultema L.A., Brauer D.D., Richter B., Fischer M., Theato P. // Polymers. 2016. V. 8. № 7. P. 266. https://doi.org/10.3390/polym8070266
  105. Lee J., Lee S., Kim J., Hanif Z., Han S., Hong S., Yoon M. // Bull. Korean Chem. Soc. 2018. V. 39. № 1. P. 84–89. https://doi.org/10.1002/bkcs.11350
  106. Limjuco L.A., Nisola G.M., Parohinog K.J., Valdehue-sa K.N.G., Lee S., Kim H., Chung W. // Chem. Eng. J. 2019. V. 378. P. 122216. https://doi.org/10.1016/j.cej.2019.122216
  107. Griebel J., Nguyen N., Namnabat S., Anderson L., Glass R., Norwood R., Mackay M., Char K., Pyun J. // ACS Macro Lett. 2015. V. 4. № 9. P. 862–866. https://doi.org/10.1021/acsmacrolett.5b00502
  108. Kuwabara J., Oi K., Watanabe M.M., Fukuda T., Kanbara T. // ACS Appl. Polym. Mater. 2020. V. 2. № 11. P. 5173–5178. https://doi.org/10.1021/acsapm.0c00924
  109. Boyd D., Nguyen V., McClain C., Kung F., Baker C., Myers J., Hunt M., Kim W., Sanghera J. // ACS Macro Letters. 2019. V. 8. № 2. P. 113–116. https://doi.org/10.1021/acsmacrolett.8b00923
  110. Kleine T.S., Glass R.S., Lichtenberger D.L., Mackay M.E., Char K., Norwood R.A., Pyun J. // ACS Macro Letters. 2020. V. 9. № 2. P. 245–259. https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.9b00948
  111. Cherumukkil S., Agrawal S., Jasra R.V. // ChemistrySelect. 2023. V. 8. № 10. e202204428. https://doi.org/10.1002/slct.202204428
  112. Griebel J.J., Namnabat S., Kim E.T., Himmelhuber R., Moronta D.H., Chung W.J., Simmonds A.G., Kim K., Van der Laan J., Nguyen N.A., Dereniak E.L., Ma-ckay M.E., Char K., Glass R.S., Norwood R.A., Pyun J. // Adv. Mater. 2014. V. 26. № 19. P. 3014–3018. https://doi.org/10.1002/adma.201305607
  113. Kleine T.S., Nguyen N.A., Anderson L.E., Namnabat S., LaVilla E.A., Showghi S.A., Dirlam P.T., Arrington C.B., Manchester M.S., Schwiegerling J., Glass R.S., Char K., Norwood R.A., Mackay M.E., Pyun J. // ACS Macro Letters. 2016. V. 5. P. 1152–1156. https://doi.org/10.1021/acsmacrolett.6b00602
  114. Gomez I., Mantione D., Leonet O., Blazquez J.A., Mecerreyes D. // ChemElectroChem. 2018. V. 5. № 2. P. 260–265. https://doi.org/10.1002/celc.201700882
  115. Dong P., Han K.S., Lee J.I., Zhang X., Cha Y., Song M.K. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 35. P. 29565–29573. https://doi.org/10.1021/acsami.8b09062
  116. Choudhury S. // Curr. Opin. Electrochem. 2020. V. 21. P. 303–310. https://doi.org/10.1016/j.coelec.2020.03.013.112
  117. Zhang Q., Huang Q., Hao S.M., Deng S., He Q., Lin Z., Yang Y. // Adv. Sci. 2022. V. 9. № 2. P. 2103798. https://doi.org/10.1002/advs.202103798
  118. Lopez C.V., Maladeniya C.P., Smith R.C. // Electrochem. 2020. V. 1. P. 226–259. https://doi.org/10.3390/electrochem1030016
  119. Hu Y., Chen W., Lei T., Jiao Y., Huang J., Hu A., Gong C., Yan C., Wang X., Xiong J. // Adv. Energy Mater. 2020. V. 10. P. 2000082. https://doi.org/10.1002/aenm.202000082
  120. Chen J.M., Duan H., Kong Y., Tian B., Ning G.H., Li D. // Energy Fuels. 2022. V. 36. № 11. P. 5998–6004. https://doi.org/10.1021/acs.energyfuels.2c01035
  121. Simmonds A.G., Griebel J.J., Park J., Kim K.R., Chung W.J., Oleshko V.P., Kim J., Kim E.T., Glass R.S., Soles C.L., Sung Y., Char K., Pyun J. // ACS Macro Letters. 2014. V. 3. P. 229–232. https://doi.org/10.1021/mz400649w
  122. Zhao F., Li Y., Feng W. // Small Methods. 2018. V. 2. P. 1800156. https://doi.org/10.1002/smtd.201800156
  123. Gomez I., Mecerreyes D., Blazquez J.A., Leonet O., Youcef H.B., Li C., Gómez-Cámer J.L., Bondarchuk O., Rodriguez-Martinez L. // J. Power Sources. 2016. V. 329. P. 72–78. https://doi.org/10.1016/j.jpowsour.2016.08.046
  124. Sun Z., Xiao M., Wang S., Han D., Song S., Chen G., Meng Y. // J. Mater. Chem. A. 2014. V. 2. P. 9280–9286. https://doi.org/10.1039/C4TA00779D
  125. Zhang Y., Griebel J.J., Dirlam P.T., Nguyen N.A., Glass R.S., Mackay M.E., Char K., Pyun J. // J. Polym. Sci. Part A: Polym. Chem. 2016. V. 55. № 1. P. 107–116. https://doi.org/10.1002/pola.28266
  126. Gomez I., Leonet O., Blazquez J.A., Mecerreyes D. // ChemSusChem. 2016. V. 9. № 24. P. 3419–3425. https://doi.org/10.1002/cssc.201601474
  127. Huang C., Xiao J., Shao Y., Zheng J., Bennett W.D., Lu D., Saraf L.V., Engelhard M., Ji L., Zhang J., Li X., Graff G.L., Liu J. // Nat. Commun. 2014. V. 5. P. 3015. https://doi.org/10.1038/ncomms4015
  128. Tantis I., Bakandritsos A., Zaoralová D., Medveď M., Jakubec P., Havláková J., Zbořil R., Otyepka M. // Adv. Funct. Mater. 2021. V. 31. P. 2101326. https://doi.org/10.1002/adfm.202101326
  129. Jo S.-C., Hong J.-W., Choi I.-H., Kim M.-J., Kim B.G., Lee Y.-J., Choi H.Y., Kim D., Kim T.-Y., Baeg K.-J., Park J.-W. // Nano-Micro Small. 2022. V. 18. P. 2200326. https://doi.org/10.1002/smll.202200326
  130. Talapaneni S.N., Hwang T.H., Je S.H., Buyukcakir O., Choi J.W., Coskun A. // Angew. Chem. Int. Ed. 2016. V. 55. № 9. P. 3106–3111. https://doi.org/10.1002/anie.201511553
  131. Shukla S., Ghosh A., Roy P.K., Mitra S., Lochab B. // Polymer. 2016. V. 99. P. 349–357. https://doi.org/10.1016/j.polymer.2016.07.037
  132. Kim H., Lee J., Ahn H., Kim O., Park M.J. // Nat. Commun. 2015. V. 6. P. 7278. https://doi.org/10.1038/ncomms8278
  133. Yusupova A.A., Shamov A.G., Ahmetova R.T., Pervu-shin V.A., Khatsrinov A.I. // Int. J. Quantum Chem. 2011. V. 111. № 11. P. 2575–2578. https://doi.org/10.1002/qua.22754
  134. Yusupova A.A., Khatsrinov A.I., Ahmetova R.T. // Inorg. Materials. 2018. V. 54. P. 809–814. https://doi.org/10.1134/S0020168518080174
  135. Baraeva L.R., Yusupova A.A., Ahmetova R.T., Khatsrinov A.I., Mezhevich Z.V. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 1106–1010. https://doi.org/10.1134/S0036024419060049
  136. Yusupova A.A., Khatsrinov A.I., Shafigullin L.N. // Solid State Phenomena. 2020. V. 299. P. 181–187. https://doi.org/10.4028/www.scientific.net/SSP.299.181
  137. Mao J., Wang Y., Zhu J., Yu J., Hu Z. // Appl. Surf. Sci. 2018. V. 447. P. 235–243. https://doi.org/10.1016/j.apsusc.2018.03.188
  138. Sakaguchi Y., Tamura K. // MRS Online Proceedings Library. 2006. V. 918. P. 135–141. https://doi.org/10.1557/PROC-0918-H03-02
  139. Tarasova N.P., Zanin A.A., Sobolev P.S., Krivoboro-dov E.G. // Dokl. Chem. 2017. V. 473. P. 78–79. https://doi.org/10.1134/S0012500817040073
  140. Tarasova N.P., Krivoborodov E.G., Mezhuev Ya.O. // Russ. Chem. Bull. 2023. V. 72. № 2. P. 415–424. https://doi.org/10.1007/s11172-023-3809-9
  141. Tarasova N.P., Mezhuev Y.O., Zanin A.A., Krivoboro-dov E.G. // Dokl. Chem. 2019. V. 484. P. 8–11. https://doi.org/10.1134/S0012500819010051
  142. Tarasova N., Krivoborodov E., Zanin A., Mezhuev Y. // Pure Appl. Chem. 2021. V. 93. № 1. P. 29–37. https://doi.org/10.1515/pac-2019-0804
  143. Tarasova N., Krivoborodov E., Egorova A., Zanin A., Glukhov L., Toropygin I., Mezhuev Ya. // Pure Appl. Chem. 2020. V. 92. P. 1297–1304. https://doi.org/10.1515/pac-2019-1211
  144. Tarasova N., Krivoborodov E., Zanin A., Toropygin I., Pascal E., Dyatlov V., Mezhuev Ya. // Macromol. Res. 2021. V. 29. P. 847–850. https://doi.org/10.1007/s13233-021-9104-6
  145. Tarasova N., Zanin A., Krivoborodov E., Motyakin M., Levina I., Dyatlov V., Toropygin I., Dyakonov V., Mezhuev Y. // Green Chem. Lett. Rev. 2021. V. 14. P. 435–441. https://doi.org/10.1080/17518253.2021.1926550
  146. Tarasova N., Zanin A., Krivoborodov E., Toropygin I., Pascal E., Mezhuev Ya. // Polymers. 2021. V. 13. P. 1806. https://doi.org/10.3390/polym13111806
  147. Tarasova N., Krivoborodov E., Zanin A., Pascal E., Toropygin I., Artyukhov A., Muradyan S., Mezhuev Ya. // Gels. 2022. V. 8. P. 136. https://doi.org/10.3390/gels8020136

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (1MB)
3.

Жүктеу (6KB)
4.

Жүктеу (5KB)
5.

Жүктеу (6KB)
6.

Жүктеу (4KB)
7.

Жүктеу (6KB)
8.

Жүктеу (4KB)
9.

Жүктеу (6KB)
10.

Жүктеу (6KB)
11.

Жүктеу (6KB)
12.

Жүктеу (6KB)
13.

Жүктеу (6KB)
14.

Жүктеу (6KB)
15.

Жүктеу (7KB)
16.

Жүктеу (6KB)
17.

Жүктеу (7KB)
18.

Жүктеу (6KB)
19.

Жүктеу (7KB)
20.

Жүктеу (6KB)
21.

Жүктеу (7KB)
22.

Жүктеу (6KB)
23.

Жүктеу (7KB)
24.

Жүктеу (6KB)
25.

Жүктеу (7KB)
26.

Жүктеу (4KB)
27.

Жүктеу (7KB)
28.

Жүктеу (4KB)
29.

Жүктеу (7KB)
30.

Жүктеу (6KB)
31.

Жүктеу (7KB)
32.

Жүктеу (4KB)
33.

Жүктеу (17KB)
34.

Жүктеу (13KB)
35.

Жүктеу (16KB)
36.

Жүктеу (67KB)
37.

Жүктеу (37KB)
38.

Жүктеу (18KB)
39.

Жүктеу (84KB)
40.

Жүктеу (25KB)
41.

Жүктеу (29KB)
42.

Жүктеу (59KB)
43.

Жүктеу (63KB)
44.

Жүктеу (37KB)
45.

Жүктеу (36KB)
46.

Жүктеу (96KB)

© Н.П. Тарасова, Е.Г. Кривобородов, Я.О. Межуев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>