Ионные жидкости – новые газохроматографические фазы с уникальными свойствами. Обзор

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Необходимым и при этом наиболее сложным элементом исследования многих химических процессов является достоверный химический анализ как исходных реагентов, так и продуктов их превращения. Один из наиболее распространенных методов такого анализа – газовая хроматография, которая, к сожалению, имеет ряд ограничений. К таким ограничениям относится, например, низкая термостабильность высокополярных неподвижных жидких фаз (НЖФ). Данное ограничение можно преодолеть использованием ионных жидкостей (ИЖ) в качестве НЖФ. В данном обзоре мы акцентируем внимание на использовании НЖФ на основе ИЖ с катионами различных химических классов. Свойства таких НЖФ рассмотрены с точки зрения их возможной хроматографической селективности и приведены примеры использования колонок с ИЖ для решения конкретных аналитических задач. Обсуждаются характеристики доступных в настоящее время коммерческих колонок, где ИЖ использованы в качестве НЖФ.

Об авторах

М. В. Шашков

ФГБУН Федеральный исследовательский центр “Институт катализа им. Г.К. Борескова
Сибирского отделения Российской академии наук”; ФГАОУ ВПО Национальный исследовательский Новосибирский государственный университет

Автор, ответственный за переписку.
Email: shashkov@catalysis.ru
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск

В. Н. Сидельников

ФГБУН Федеральный исследовательский центр “Институт катализа им. Г.К. Борескова
Сибирского отделения Российской академии наук”; ФГАОУ ВПО Национальный исследовательский Новосибирский государственный университет

Email: shashkov@catalysis.ru
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск

В. Н. Пармон

ФГБУН Федеральный исследовательский центр “Институт катализа им. Г.К. Борескова
Сибирского отделения Российской академии наук”

Email: shashkov@catalysis.ru
Россия, 630090, Новосибирск

Список литературы

  1. GC consumables SGE catalog. 2020. Access on: http://www.sge.com/products Ссылка активна на 15.01.2023.
  2. Han X., Armstrong D.W. // Acc. Chem. Res.2007. V. 40. № 11. P. 1079–1086. https://doi.org/10.1021/ar700044y
  3. Anderson J.L., Armstrong D.W. // Anal. Chem. 2003. V. 75. № 18. P. 4851–4858. https://doi.org/10.1021/ac0345749
  4. Poole C.F., Poole S.K. // J. Sep. Sci.2011.V. 3. № 8. P. 888–900. https://doi.org/10.1002/jssc.201000724
  5. Poole C.F., Lenca N. // J. Chromatogr. A. 2014. V. 1357. P. 87–109. https://doi.org/10.1016/j.chroma.2014.03.029
  6. Ragonese C., Sciarrone D., Tranchida P.Q., Dugo P., Mondello L. // J. Chromatogr. A. 2012. V. 1255. P. 130–144. https://doi.org/10.1016/j.chroma.2012.04.069
  7. Nan H., Anderson J.L. // TrAC, Trends Anal. Chem. 2018. V. 105. P. 367–379. https://doi.org/10.1016/j.trac.2018.03.020
  8. Abraham M.H., Poole C.F., Poole S.K. // J. Chromatogr. A. 1999. V. 842. № 1–2. P. 79–114. https://doi.org/10.1016/S0021-9673(98)00930-3
  9. Carda-Broch S., Berthod A., Angel M.J.R. // 2008. V. 1184. P. 6–18. https://doi.org/10.1016/j.chroma.2007.11.109
  10. Nasirpour N., Mohammadpourfard M., Zeinali Heris S. // Chem. Eng. Res. Des. 2020. V. 160. № LC. P. 264–300. https://doi.org/10.1016/j.cherd.2020.06.006
  11. Shamsi S.A., Danielson N.D. // J. Sep. Sci. 2007. P. 1729–1750. https://doi.org/10.1002/jssc.200700136
  12. Berthod A., Carda-Broch S. // Actual. Chim. 2004. № 271. P. 24–30. https://www.researchgate.net/publication/283925239. Ссылка активна на 04.02.2023.
  13. Koel M. // Crit. Rev. Anal.Chem. 2005. № 3. V. 35. P. 177–192. https://www.researchgate.net/publication/283925239. Ссылка активна на 04.02.2023.
  14. Pandey S. // Anal.Chim.Acta. 2006. V. 556 № 1. P. 38–45. https://doi.org/10.1016/j.aca.2005.06.038
  15. Stalcup A.M., Cabovska B. // J. Liq. Chromat. Relat. Tech. 2004. V. 27. № 7–9. P. 1443–1459. https://doi.org/10.1081/JLC-120030611
  16. Sun P., Armstrong D.W. // Anal. Chim. Acta 2010. V. 661. P. 1–16. https://doi.org/10.1016/j.aca.2009.12.007
  17. Joshi M.D., Anderson J.L. // RSC Adv. 2012. V. 2. № 13. P. 5470–5484. https://doi.org/10.1039/c2ra20142a
  18. Walden P. // Bull. Acad. Imper. Sci. 1914. V. 8. № 6. P. 405–422.
  19. Poole C.F., Furton K.G., Kersten B.R. // J. Chromatogr. Sci. 1986. V. 24. № 9. P. 400–409. https://doi.org/10.1093/chromsci/24.9.400
  20. Pacholec F., Pool C.F. // Chromatographia. 1983. V. 17. № 7. P. 370–374.
  21. Dhanesar S.C., Poole C.F. // Anal. Chem. 1984. V. 56. № 13. P. 2509–2512. https://doi.org/10.1021/ac00277a055
  22. Armstrong D.W., He L., Liu Y.S. // Anal. Chem. 1999. V. 71. № 17. P. 3873–3876. https://doi.org/10.1021/ac990443p
  23. Héberger K., Zenkevich I.G. // J. Chromatogr. A. 2010. V. 1217. № 17. P. 2895–2902. https://doi.org/10.1016/j.chroma.2010.02.037
  24. Modern Practice of Gas Chromatography. Grob R.L., Barry E.F. (Eds.). 4th Edition. Wiley & Sons, Inc., Hoboken, New Jersey, 2004. 1036 p.
  25. Kollie T.O., Poole C.F., Abraham M.H., Whiting G.S. // Anal. Chim. Acta. 1992. V. 259. № 1. P. 1–13. https://doi.org/10.1016/0003-2670(92)85067-G
  26. McReynolds W.O. // J. Chromatogr. Sci. 1970. V. 8. № 12. P. 685–691. https://doi.org/10.1093/chromsci/8.12.685
  27. Rohrschneider L. // J. Chromatogr. A. 1966. V. 22. P. 6–22. https://doi.org/10.1016/S0021-9673(01)97064-5
  28. Зайцева Е.А. // Сорбционные и хроматографические процессы. 2020. V. 20. № 2. P. 175–196. https://doi.org/10.17308/sorpchrom.2020.20/2772
  29. Abraham M.H. // Chem. Soc. Rev. 1993. V. 22. № 2. P. 73–83. https://doi.org/10.1039/CS9932200073
  30. Callihan B.K., Ballantine D.S. // J. Chromatogr. A. 2000. V. 893. № 2. P. 339–346. https://doi.org/10.1016/S0021-9673(00)00763-9
  31. Poole C.F., Atapattu S.N., Poole S.K., Bell A.K. // Anal. Chim. Acta. 2009. V. 652. № 1–2. P. 32–53. https://doi.org/10.1016/j.aca.2009.04.038
  32. Yao C., Anderson J.L. // J. Chromatogr. A. 2009. V. 1216. № 10. P. 1658–1712. https://doi.org/10.1016/j.chroma.2008.12.001
  33. Anderson J.L., Ding R., Ellern A., Armstrong D.W. // J. Am. Chem. Soc. 2005. V. 127. № 2. P. 593–604. https://doi.org/10.1021/ja046521u
  34. Wang Y., Qi M., Fu R. // RSC Adv. 2015. V. 5. № 93. P. 76007–76013. https://doi.org/10.1039/c5ra15020e
  35. Nan H., Peterson L., Anderson J.L. // Anal. Bioanal. Chem. 2018. V. 410. № 19. P. 4597–4606. https://doi.org/10.1007/s00216-017-0802-z
  36. Supelco; Sigma-Aldrich. Supelco Ionic Liquid GC Columns : Introduction to the Technology // Supelco Ion. Liq. GC Columns. 2014. P. 42.
  37. Shashkov M.V., Sidel’nikov V.N. // Prot. Met. Phys. Chem. Surfaces. 2015. V. 51. № 6. P. 1080–1086. https://doi.org/10.1134/S2070205115060210
  38. Shashkov M.V., Sidelnikov V.N., Bratchikova A.A. // Anal. Lett. 2020. V. 53. № 1. P. 84–101. https://doi.org/10.1080/00032719.2019.1638393
  39. Qiao L.Z., Lu K., Qi M.L., Fu R.N. // Chinese Chem. Lett. 2010. V. 21 № 9. P. 1133–1136. https://doi.org/10.1016/j.cclet.2010.04.003
  40. Aschenbrenner O., Supasitmongkol S., Taylor M., Sty-ring P. // Green Chem. 2009. V. 11. № 8. P. 1217–1221. https://doi.org/10.1039/b904407h
  41. Catalog SGE columns. 2020. Accesses on: http://www.sge.com/gc. Ссылка активна на 15.01.2023.
  42. Reetz M.T., Wiesenhöfer W., Francio G., Leitner W. // Chem. Commun. 2002. № 9. P. 992–993. https://doi.org/10.1039/B202322A
  43. Berthod A., Carda-Broch S. Uses of ionic liquids in analytical chemistry // Reactions. 2004. V. 1. P. 1–6.
  44. Werner S., Haumann M. Wasserscheid P. // Annu. Rev. Chem. Biomol. Eng. 2010. V. 1. P. 203–230. https://doi.org/10.1146/annurev-chembioeng-073009-100915
  45. Qi M., Armstrong D.W. // Anal. Bioanal. Chem. 2007. V. 388. № 4. P. 889–899. https://doi.org/10.1007/s00216-007-1290-3
  46. Payagala T., Zhang Y., Wanigasekara E., Huang K., Breitbach Z.S., Sharma P.S., Sidisky L.M., Armstrong D.W. // Anal. Chem. 2009. V. 81. № 1. P. 160–173. https://doi.org/10.1021/ac8016949
  47. Jaime González-Álvarez J., Blanco-Gomis D., Arias-Abrodo P., Díaz-Llorente D., Ríos-Lombardía N., Busto E., Gotor-Fernández V., Gutiérrez-Álvarez M.D. // J. Sep. Sci. 2012. V. 35. № 2. P. 273–279. https://doi.org/10.1002/jssc.201100830
  48. Huang K., Han X., Zhang X., Armstrong D.W. // Anal. Bioanal. Chem. 2007. V. 389. № 7–8. P. 2265–2275. https://doi.org/10.1007/s00216-007-1625-0
  49. Berthod A., Ruiz-Ángel M.J., Carda-Broch S. // J. Chromatogr. A. 2018. V. 1559. P. 2–16. https://doi.org/10.1016/j.chroma.2017.09.044
  50. Shashkov M.V., Sidelnikov V.N. // J. Chromatogr. A. 2013. V. 1309. P. 56–63. https://doi.org/10.1016/j.chroma.2013.08.030
  51. Shashkov M.V., Sidelnikov V.N. // Anal. Bioanal. Chem. 2012. V. 403. № 9. P. 2673–2682. https://doi.org/10.1007/s00216-012-6020-9
  52. Heydar K.T., Azadeh A.M., Yaghoubnejad S., Ghonouei N., Sharifi A., Rahnama M.A. // J. Chromatogr. A. 2017. V. 1511. P. 92–100. https://doi.org/10.1016/j.chroma.2017.05.037
  53. Jiang R., Liu T., Yang S., Sun L., Luo A. // Acta Chromatogr. 2017. V. 29. № 1. P. 25–43. https://doi.org/10.1556/1326.2017.29.1.2
  54. Nan H., Zhang C., O’Brien R.A., Benchea A., Davis J.H., Anderson J.L. // J. Chromatogr. A. 2017. V. 1481. P. 127–136. https://doi.org/10.1016/j.chroma.2016.12.032
  55. Talebi M., Patil R.A., Sidisky L.M., Berthod A., Armstrong D.W. // Anal. Bioanal. Chem. 2018. V. 410. № 19. P. 4633–4643. https://doi.org/10.1016/j.chroma.2016.12.032
  56. Talebi M., Patil R.A., Sidisky L.M., Berthod A., Armstrong D.W. // Anal. Chim. Acta. 2018. V. 1042. P. 155–164. https://doi.org/10.1016/j.aca.2018.07.047
  57. Nan H., Kuroda K., Takahashi K., Anderson J.L. // J. Chromatogr. A. 2019. V. 1603. P. 288–296. https://doi.org/10.1016/j.chroma.2019.06.021
  58. Pomaville R.M., Poole C.F. // Anal. Chem. 1988. V. 60. № 11. P. 1103–1108. https://doi.org/10.1021/ac00162a005
  59. Hai-Yan Z., Xian-Bo L., Yu-Zeng T., Ji-Ping C. // Chinese J. Anal. Chem. 2010. V. 38. № 7. P. 1003–1006. https://doi.org/10.1016/S1872-2040(09)60056-6
  60. Armstrong D.W., Breitbach Z.S. // Anal. Bioanal. Chem. 2008. V. 390. № 6. P. 1605–1617. https://doi.org/10.1007/s00216-008-1877-3
  61. Shashkov M.V., Sidel’Nikov V.N. // Russ. J. Phys. Chem. A. 2012. V. 86. № 1. P. 138–141. https://doi.org/10.1134/S0036024412010268
  62. Mazzucotelli M., Bicchi C., Marengo A., Rubiolo P., Galli S., Anderson J.L., Sgorbini B., Cagliero C. // J. Chromatogr. A. 2019. V. 1583. P. 124–135. https://doi.org/10.1016/j.chroma.2018.11.032
  63. Cagliero C., Mazzucotelli M., Rubiolo P., Marengo A., Galli S., Anderson J.L., Sgorbini B., Bicchi C. // J. Chromatogr. A. 2020. V. 1619. P. 460969. https://doi.org/10.1016/j.chroma.2020.460969
  64. Li M.W.H., Huang X., Zhu H., Kurabayashi K., Fan X. // J. Chromatogr. A. 2020. V. 1620. P. 461002. https://doi.org/10.1016/j.chroma.2020.461002
  65. Ronco N.R., Lancioni C., Romero L.M., Castells C.B. // J. Chromatogr. A. 2020. V. 1622. P. 461127. https://doi.org/10.1016/j.chroma.2020.461127
  66. Patil R.A., Talebi M., Sidisky L.M., Berthod A., Armstrong D.W. // J. Sep. Sci. 2018. V. 41. № 22. P. 4142–4148. https://doi.org/10.1002/jssc.201800695
  67. Anderson J.L., Ding J., Welton T., Armstrong D.W. // J. Am. Chem. Soc. 2002. V. 124. № 47. P. 14247–14254. https://doi.org/10.1021/ja028156h
  68. Martin S.D., Poole C.F., Abraham M.H. // J. Chroma-togr. A. 1998. V. 805. № 1–2. P. 217–235. https://doi.org/10.1016/S0021-9673(98)00007-7
  69. Shashkov M.V., Sidelnikov V.N. // J. Struct. Chem. 2014. V. 55. № 5. P. 980–985. https://doi.org/10.1134/S002247661405028X
  70. Shashkov M.V., Sidelnikov V.N. // Chromatographia. 2019. V. 82. № 2. P. 615–624. https://doi.org/10.1007/s10337-018-3672-4
  71. Shashkov M.V., Sidelnikov V.N. // J. Sep. Sci. 2016. V. 39. № 19. P. 3754–3760. https://doi.org/10.1002/jssc.201600431
  72. Shashkov M.V., Sidelnikov V.N., Zaikin P.A. // Russ. J. Phys. Chem. A. 2014. V. 88. № 4. P.717–721. https://doi.org/10.1134/S0036024414040268
  73. Qiao L., Lu K., Qi M., Fu R. // J. Chromatogr. A. 2013. V. 1276. P. 112–119. https://doi.org/10.1016/j.chroma.2012.12.039
  74. Wang X., Qi M., Fu R. // J. Chromatogr. A. 2014. V. 1371. P. 237–243. https://doi.org/10.1016/j.chroma.2014.10.066
  75. Wang L., Wang X., Qi M., Fu R. // J. Chromatogr. A. 2014. V. 1334. P. 112–117. https://doi.org/10.1016/j.chroma.2014.01.070
  76. Yuan Q., Qi M. // J. Chromatogr. A. 2020. V. 1621. P. 461084. https://doi.org/10.1016/j.chroma.2020.461084
  77. Shashkov M.V., Sidelnikov V.N., Bratchikova A.A., Nikolaeva O.A. // Russ. J. Phys. Chem. A. 2020. V. 94. № 7. P. 1494–1502. https://doi.org/10.1134/S0036024420070262
  78. Alekseeva M.V., Bulavchenko O.A., Saraev A.A., Kremneva A.M., Shashkov M. V, Zaikina O.O., Gulyaeva Y.K., Grachev A.N., Kikhtyanin O., Kubička D. // Catalysts. 2020. V. 10. № 11. P. 1273. https://doi.org/10.3390/catal10111273
  79. Hantao L.W., Najafi A., Zhang C., Augusto F., Ander-son J.L. // Anal. Chem. 2014. V. 86. № 8. P. 3717–3721. https://doi.org/10.1021/ac5004129
  80. Nan H., Zhang C., Venkatesh A., Rossini A.J., Ander-son J.L. // J. Chromatogr. A. 2017. V. 1523. P. 316–320. https://doi.org/10.1016/j.chroma.2017.06.024
  81. Huang K.P., Misra T.K., Wang G.R., Huang B.Y., Liu C.Y. // J. Chromatogr. A. 2008. V. 1215. № 1–2. P. 177–184. https://doi.org/10.1016/j.chroma.2008.11.018
  82. Ngo H.L., Lecompte K., Hargens L., Mcewen A.B. // Therm. Acta. 2000. V. 358. № 5. P. 97–102. https://doi.org/10.1016/S0040-6031(00)00373-7
  83. Crosthwaite J.M., Muldoon M.J., Dixon J.K., Ander-son J.L., Brennecke J.F. // J. Chem. Therm. 2005. V. 37. P. 559–568. https://doi.org/10.1016/j.jct.2005.03.013
  84. Wei Q.Q., Qi M.L., Fu R.N. // Chinese Chem. Lett. 2009. V. 20. № 9. P. 1111–1114. https://doi.org/10.1016/j.cclet.2009.04.002
  85. Sun X., Wu C., Xing J. // J. Sep. Sci. 2010. V. 33. № 20. P. 3159–3167. https://doi.org/10.1002/jssc.201000030
  86. Curat A., Tisse S., Andrieu A., Bar N., Villemin D., Cardinael P. // Chromatographia. 2014. V. 77. № 23–24. P. 1671–1681. https://doi.org/10.1007/s10337-014-2784-8
  87. Curat A., Tisse S., Agasse-Peulon V., Villemin D., Cardinael P. // Chromatographia. 2020. V. 83. № 3. P. 439–449. https://doi.org/10.1007/s10337-020-03854-7
  88. Pello-Palma J., González-Álvarez J., Gutiérrez-Álvarez M.D., Dapena de la Fuente E., Mangas-Alonso J.J., Méndez-Sánchez D., Gotor-Fernández V., Arias-Abrodo P. // Anal. Bioanal. Chem. 2017. V. 409. № 11. P. 3033–3041. https://doi.org/10.1007/s00216-017-0250-9
  89. Dai J.L., Zhao L.H., Shi J.H. // J. Sep. Sci. 2017. V. 40. № 13. P. 2769–2778. https://doi.org/10.1002/jssc.201700130
  90. González-Álvarez J., Arias-Abrodo P., Puerto M., Viguri M.E., Perez J., Gutiérrez-Álvarez M.D. // New J. Chem. 2015. V. 39. № 11. P. 8560–8568. https://doi.org/10.1039/c5nj01842k
  91. González-Álvarez J., Arias-Abrodo P., Puerto M., Viguri M.E., Pérez J., Gutiérrez-Álvarez M.D. // RSC Adv. 2013. V. 3. № 44. P. 21377–21380. https://doi.org/10.1039/c3ra43782e
  92. Zhang L.X., Liu T., Chen Z.H., Sun L.Q., Luo A.Q. // Adv. Mater. Res. 2011. V. 236–238. P. 2639–2642. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2639
  93. Hsieh Y.N., Horng R.S., Ho W.Y., Huang P.C., Hsu C.Y., Whang T.J., Kuei C.H. // Chromatographia. 2008. V. 67. № 5–6. P. 413–420. https://doi.org/10.1365/s10337-008-0531-8
  94. Zhang C., Park R.A., Anderson J.L. // J. Chromatogr. A. 2016. V. 1440. P. 160–171. https://doi.org/10.1016/j.chroma.2016.02.039
  95. Roeleveld K., David F., Lynen F. // J. Chromatogr. A. 2016. V. 1451. P. 135–144. https://doi.org/10.1016/j.chroma.2016.05.007
  96. Wong Y.F., West R.N., Chin S.T., Marriott P.J. // J. Chromatogr. A. 2015. V. 1406. P. 307–315. https://doi.org/10.1016/j.chroma.2015.06.036
  97. Pojjanapornpun S., Nolvachai Y., Aryusuk K., Kulsing C., Krisnangkura K., Marriott P.J. // Anal. Bioanal. Chem. 2018. V. 410. № 19. P. 4669–4677. https://doi.org/10.1007/s00216-018-0944-7
  98. Sidisky L.M., Serrano G., Baney G.A., Desorcie J.L., Zheng X., Buchanan M.D. Improved inertness ionic liquid capillary columns // 40th ISCC & 13th GCxGC Symposium, 29 May – 3 June 2016, Riva del Garda, Italy. Chromaleont, 2016. P. B‑03.
  99. Sidisky L.M., Serrano G., Desorcie J.L., Baney G.A., Stenerson K.K., Halpenny M., Buchanan M.D. Evaluating the unique selectivity of ionic liquid capillary columns // 40th ISCC & 13th GCxGC Symposium, 29 May–3 June 2016, Riva del Garda, Italy. Chromaleont, 2016. P. LE 21.
  100. Rodríguez-Sánchez S., Galindo-Iranzo P., Soria A.C., Sanz M.L., Quintanilla-López J.E. Lebrón-Aguilar R. // J. Chromatogr. A. 2014. V. 1326. P. 96–102. https://doi.org/10.1016/j.chroma.2013.12.020
  101. Rood D. The troubleshooting and maintenance guide for gas chromatographers. John Wiley & Sons, 2007. https://doi.org/10.1002/9783527611300
  102. Weber W., Andersson J.T. // Anal. Bioanal. Chem. 2014. V. 406. № 22. P. 5347–5358. https://doi.org/10.1007/s00216-014-7972-8
  103. Zhao Q., Eichhorn J., Pitner W.R., Anderson J.L. // Anal. Bioanal. Chem. 2009. V. 395. № 1. P. 225–234. https://doi.org/10.1007/s00216-009-2951-1
  104. Weatherly C.A., Woods R.M., Armstrong D.W. // J. Agric. Food Chem. 2014. V. 62. № 8. P. 1832–1838. https://doi.org/10.1021/jf4050167
  105. Armstrong D.W. Measuring water: the expanding role of gas chromatography. // LC‑GC North America. 2017. V. 35. № 8. P. 503–505.
  106. Padivitage N.L.T., Smuts J.P., Armstrong D.W. Chap-ter 11. Water determination. In: Specification of Drug Substances and Products. Riley C.M., Rosanske T.W., Riley S.R.R. (Eds.) 2014. P. 223–241. https://doi.org/https://doi.org/10.1016/B978-0-08-098350-9.00011-4
  107. Sidisky L.M., Serrano G., Desorcie J.L., Stenerson K.K., Baney G., Halpenny M., Buchanan M.D. Mixing Water and Gas: The Quantitative Measurement of Water by Gas Chromatography Using Ionic Liquid Capillary Columns // Enviromental Technology-online. Mar. 08. 2016. Access on: https://www.envirotech-online.com/article/gc-mdgc/32/supelco/mixing-water-and-gas-the-quantitative-measurement-of-water-by-gas-chromatography-using-ionic-liquid-capillary-columns/2003. Ссылка активна на 04.02.2023.
  108. Frink L.A., Armstrong D.W. // Anal. Chem. 2016. V. 88. № 16. P. 8194–8201. https://doi.org/10.1021/acs.analchem.6b02006
  109. Fanali C., Micalizzi G., Dugo P., Mondello L. // Analyst. 2017. V. 142. № 24. P. 4601–4612. https://doi.org/10.1039/c7an01338h
  110. Villegas C., Zhao Y., Curtis J.M. // J. Chromatogr. A. 2010. V. 1217. № 5. P. 775–784. https://doi.org/10.1016/j.chroma.2009.12.011
  111. Weatherly C.A., Zhang Y., Smuts J.P., Fan H., Xu C., Schug K.A., Lang J.C., Armstrong D.W. // J. Agric. Food Chem. 2016. V. 64. № 6. P. 1422–1432 https://doi.org/10.1021/acs.jafc.5b05988
  112. Delmonte P., Fardin-Kia A.R., Kramer J.K.G., Mos-soba M.M., Sidisky L., Tyburczy C., Rader J.I. // J. Chromatogr. A. 2012. V. 1233. P. 137–146. https://doi.org/10.1016/j.chroma.2012.02.012
  113. Delmonte P., Fardin Kia A.R., Kramer J.K.G., Mos-soba M.M., Sidisky L., Rader J.I. // J. Chromatogr. A. 2011. V. 1218. № 3. P. 545–554. https://doi.org/10.1016/j.chroma.2010.11.072
  114. Ando Y., Sasaki T. // J. Am. Oil Chem. Soc. 2011. V. 88. № 6. P. 743–748. https://doi.org/10.1007/s11746-010-1733-4
  115. Turner T.D., Karlsson L., Mapiye C., Rolland D.C., Martinsson K., Dugan M.E.R. // Meat Sci. 2012. V. 91. № 4. P. 472–477. https://doi.org/10.1016/j.meatsci.2012.02.034
  116. Granafei S., Losito I., Salivo S., Tranchida P.Q., Mondello L., Palmisano F., Cataldi T.R.I. // Anal. Chim. Acta. 2015. V. 885. P. 191–198. https://doi.org/10.1016/j.aca.2015.05.028
  117. Destaillats F., Guitard M., Cruz-Hernandez C. // J. Chromatogr. A. 2011. V. 1218. № 52. P. 9384–9389. https://doi.org/10.1016/j.chroma.2011.10.095
  118. Ragonese C., Tranchida P.Q., Sciarrone D., Mondello L. // J. Chromatogr. A. 2009. V. 1216. № 51. P. 8992–8997. https://doi.org/10.1016/j.chroma.2009.10.066
  119. Cagliero C., Bicchi C., Cordero C., Liberto E., Sgorbini B., Rubiolo P. // J. Chromatogr. A. 2012. V. 1268. P. 130–138. https://doi.org/10.1016/j.chroma.2012.10.016
  120. Ragonese C., Sciarrone D., Tranchida P.Q., Dugo P., Dugo G., Mondello L., Farmaco-chimico D., Annunziata V., Messina À. // Anal. Chem. 2011. V. 83. P. 7947–7954. https://doi.org/10.1021/ac202012u
  121. Cagliero C., Bicchi C., Cordero C., Liberto E., Rubiolo P., Sgorbini B. // J. Chromatogr. A. 2017. V. 1495. P. 64–75. https://doi.org/10.1016/j.chroma.2017.03.029
  122. Cagliero C., Bicchi C. // Anal. Bioanal. Chem., 2020. V. 412. P. 17–25. https://doi.org/10.1007/s00216-019-02288-x
  123. Mazzucotelli M., Minteguiaga M.A., Sgorbini B., Sidisky L., Marengo A., Rubiolo P., Bicchi C., Cagliero C. // J. Chromatogr. A. 2020. V. 1610. P. 460567. https://doi.org/10.1016/j.chroma.2019.460567
  124. Odugbesi G.A., Nan H., Soltani M., Davis J.H., Anderson J.L. // J. Chromatogr. A. 2019. V. 1604. P. 460466. https://doi.org/10.1016/j.chroma.2019.460466
  125. Ros M., Escobar-Arnanz J., Sanz M.L., Ramos L. // J. Chromatogr. A. 2018. V. 1559. P. 156–163. https://doi.org/10.1016/j.chroma.2017.12.029
  126. Domínguez C., Reyes-Contreras C., Bayona J.M. // J. Chromatogr. A. 2012. V. 1230. P. 117–122. https://doi.org/10.1016/j.chroma.2012.01.054
  127. García Pinto C., Pérez Antón A., Pérez Pavón J.L., Moreno Cordero B. // J. Chromatogr. A. 2012. V. 1260. P. 200–205. https://doi.org/10.1016/j.chroma.2012.08.078
  128. Rodríguez-Sánchez S., Soria A.C., Lebrón-Aguilar R., Sanz M.L., Ruiz-Matute A.I. // Anal. Bioanal. Chem. 2019. V. 411. № 28. P. 7461–7472. https://doi.org/10.1007/s00216-019-02118-0
  129. Liu Z., Phillips J.B. // J. Chromatogr. Sci. 1991. V. 29. № 6. P. 227–231. https://doi.org/10.1093/chromsci/29.6.227
  130. Lambertus G.R., Crank J.A., McGuigan M.E., Kendler S., Armstrong D.W., Sacks R.D. // J. Chromatogr. A. 2006. V. 1135. № 2. P. 230–240. https://doi.org/10.1016/j.chroma.2006.09.086
  131. Delmonte P. // J. Chromatogr. A. 2016. V. 1460. P. 160–172. https://doi.org/10.1016/j.chroma.2016.07.019
  132. Nosheen A., Mitrevski B., Bano A., Marriott P.J. // J. Chromatogr. A. 2013. V. 1312. P. 118–123. https://doi.org/10.1016/j.chroma.2013.08.099
  133. Gu Q., David F., Lynen F., Vanormelingen P., Vyverman W., Rumpel K., Xu G., Sandra P. // J. Chromatogr. A. 2011. V. 1218. № 20. P. 3056–3063. https://doi.org/10.1016/j.chroma.2011.03.011
  134. Delmonte P., Kramer J.K.G., Hayward D.G., Mosso-ba M.M., Fardin-Kia A.R., Aldai N. // Lipid Technol. 2014. V. 26. № 11. P. 256–259. https://doi.org/10.1002/lite.201400064
  135. Zeng A.X., Chin S.T., Marriott P.J. // J. Sep. Sci. 2013. V. 36. № 5. P. 878–885. https://doi.org/10.1002/jssc.201200923
  136. Webster R.L., Rawson P.M., Evans D.J., Marriott P.J. // J. Sep. Sci. 2016. V. 39. № 13. P. 2537–2543. https://doi.org/10.1002/jssc.201600307
  137. Nolvachai Y., Kulsing C., Marriott P.J. // Anal. Chem. 2015. V. 87. № 1. P. 538–544. https://doi.org/10.1021/ac5030039
  138. Kulsing C., Nolvachai Y., Zeng A.X., Chin S.-T., Mitrevski B., Marriott P.J. // Chempluschem. 2014. V. 79. № 6. P. 790–797. https://doi.org/10.1002/cplu.201300410
  139. Purcaro G., Tranchida P.Q., Ragonese C., Conte L., Dugo P., Dugo G., Mondello L. // Anal. Chem. 2010. V. 82. № 20. P. 8583–8590. https://doi.org/10.1021/ac101678r
  140. Tranchida P.Q., Franchina F.A., Zoccali M., Pantò S., Sciarrone D., Dugo P., Mondello L. // J. Chromatogr. A. 2013. V. 1278. P. 153–159. https://doi.org/10.1016/j.chroma.2012.12.066
  141. Chikhoune A., Damjan Pavleca J., Shashkov M., Berroua Z., Chebbi K., Bougherra H., Zeroual B., Aliane K., Gagaoua M., Boudjellal A., Vovk I., Križman M. // J. Food Process. Preserv. 2017. V. 41. № 5. P. e13163. https://doi.org/10.1111/jfpp.13163
  142. Kupska M., Chmiel T., Jȩdrkiewicz R., Wardencki W., Namieśnik J. // Food Chem. 2014. V. 152. P. 88–93. https://doi.org/10.1016/j.foodchem.2013.11.129
  143. Wong Y.F., Uekane T.M., Rezende C.M., Bizzo H.R., Marriott P.J. // J. Chromatogr. A. 2016. V. 1477. P. 91–99. https://doi.org/10.1016/j.chroma.2016.11.038
  144. Chin S.T., Eyres G.T., Marriott P.J. // Food Chem. 2015. V. 185. P. 355–361. https://doi.org/10.1016/j.foodchem.2015.04.003
  145. Zhang C., Ingram I.C., Hantao L.W., Anderson J.L. // J. Chromatogr. A. 2015. V. 1386. P. 89–97. https://doi.org/10.1016/j.chroma.2015.01.074
  146. Krupčík J., Gorovenko R., Špánik I., Bočková I., Sandra P., Armstrong D.W. // J. Chromatogr. A. 2013. V. 1301. P. 225–236. https://doi.org/10.1016/j.chroma.2013.05.075
  147. Seeley J.V., Seeley S.K., Libby E.K., Breitbach Z.S., Armstrong D.W. // Anal. Bioanal. Chem. 2008. V. 390. № 1. P. 323–332. https://doi.org/10.1007/s00216-007-1676-2
  148. Siegler W.C., Crank J.A., Armstrong D.W., Synovec R.E. // J. Chromatogr. A. 2010. V. 1217. № 18. P. 3144–3149. https://doi.org/10.1016/j.chroma.2010.02.082
  149. Manzano C.A., Muir D., Marvin C. // Int. J. Environ. Anal. Chem. 2016. V. 96. № 10. P. 905–920. https://doi.org/10.1080/03067319.2016.1220007
  150. Mahé L., Courtiade M., Dartiguelongue C., Ponthus J., Souchon V., Thiébaut D. // J. Chromatogr. A. 2012. V. 1229. P. 298–301. https://doi.org/10.1016/j.chroma.2012.01.030
  151. Cappelli Fontanive F., Souza-Silva É.A., Macedo da Silva J., Bastos Caramão E., Alcaraz Zini C. // J. Chromatogr. A. 2016. V. 1461. P. 131–143. https://doi.org/10.1016/j.chroma.2016.07.025

Дополнительные файлы


© М.В. Шашков, В.Н. Сидельников, В.Н. Пармон, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах