SYNTHESIS OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE WITH HIGH MELTING POINT IN OCTAFLUOROBUTANE MEDIUM

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ultra-high molecular weight polyethylene (UHMWPE) with a high melting point (Tm) up to 144°C was successfully obtained by suspension polymerization in 1,4-H-octafluorobutane medium initiated by Ziegler–Natta catalysts. This method makes it possible successfully to carry out polymerization at a temperature close to ambient one and an ethylene pressure close to atmospheric one. The resulting polyethylenes were characterized by IR spectroscopy, elemental analysis and derivatographic studies. Values of melting points and degrees of crystallinity of the synthesized polymers were obtained using these data.

作者简介

N. Rasputin

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg

I. Vlasov

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg

S. Yakovlev

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg

G. Artem’ev

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Yeltsin Ural Federal University

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

I. Nikonov

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Yeltsin Ural Federal University

编辑信件的主要联系方式.
Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

D. Kopchuk

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Yeltsin Ural Federal University

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

A. Matern

Yeltsin Ural Federal University

Email: igor.nikonov.ekb@gmail.com
Russian, 620002, Yekaterinburg

V. Charushin

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Yeltsin Ural Federal University

Email: igor.nikonov.ekb@gmail.com
Russian, 620219, Yekaterinburg; Russian, 620002, Yekaterinburg

参考

  1. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. 1st ed. Kurtz S. (Ed.). New York: Academic Press, 2004. 379 p.
  2. Stein H.L. Ultrahigh molecular weight polyethylenes (UHMWPE). In: Engineered materials handbook, 1998. V. 2. P. 167.
  3. Handbook of fiber science and technology. V. 3: High technology fibers. Lewin M., Preston J. (Eds.). CRC Press, 1996.
  4. Antonov A.A., Bryliakov, K.P. // Eur. Polym. J. 2021. V. 142. Art. 110162. https://doi.org/10.1016/j.eurpolymj.2020.110162
  5. Chen Z., Mesgar M., White P.S., Daugulis O., Brook-hart M. // ACS Catal. 2015. V. 5. № 2. P. 631–636. https://doi.org/10.1021/cs501948d
  6. Zou C., Dai S., Chen C. // Macromolecules. 2018. V. 51. P. 49–56. https://doi.org/10.1021/acs.macromol.7b02156
  7. Tan C., Pang W.M., Chen C.L. // Chinese J. Polym. Sci. 2019. V. 37. P. 974–980. https://doi.org/10.1007/s10118-019-2232-1
  8. Sun M., Mu Y., Wu Q., Gao W., Ye L. // New J. Chem. 2010. V. 34. P. 2979–2987. https://doi.org/10.1039/c0nj00439a
  9. Romano D., Ronca S., Rastogi S. // Macromol. Rapid Commun. 2015. V. 36. № 3. P. 327–331. https://doi.org/10.1002/marc.201400514
  10. Huang C., Vignesh A., Bariashir C., Ma Y., Sun Y., Sun W.-H. // New J. Chem. 2019. V. 43. P. 11307–11315. https://doi.org/10.1039/C9NJ02793A
  11. Spronck M., Klein A., Blom B., Romano D. Z. // Anorg. Allg. Chem. 2018. V. 644. P. 993–998. https://doi.org/10.1002/zaac.201800165
  12. Tuskaev V.A., Gagieva S.Ch., Kurmaev D.A., Bogda-nov V.S., Magomedov K.F., Mikhaylik E.S., Golubev E.K., Buzin M.I., Nikiforova G.G., Vasil’ev V.G., Khrustalev V.N., Dorovatovskii P.V., Bakirov A.V., Shcherbina M.A., Dzhevakov P.B., Bulychev B.M. // Appl. Organomet. Chem. 2021. V. 35. № 7. Art. e6256. https://doi.org/10.1002/aoc.6256
  13. Liu K., Wu Q., Mu X., Gao W., Mu Y. // Polyhedron. 2013. V. 52. P. 222–226. https://doi.org/10.1016/j.poly.2012.09.044
  14. Schnitte M., Scholliers J.S., Riedmiller K., Mecking S. // Angew. Chem., Int. Ed. 2020. V. 59. № 8. P. 3258–3263. https://doi.org/10.1002/anie.201913117
  15. Kenyon P., Mecking S. // J. Am. Chem. Soc. 2017. V. 139. № 39. P. 13786–13790. https://doi.org/10.1021/jacs.7b06745
  16. Несын Г.В., Станкевич В.С., Сулейманова Ю.В., Шелудченко С.С., Еремкин С.М., Казаков Ю.М. Способ получения антитурбулентной присадки суспензионного типа. Патент РФ 2443720 C1. 2010.
  17. Русинов П.Г., Балашов А.В., Нифантьев И.Е. Способ получения противотурбулентной присадки и противотурбулентная присадка, полученная на его основе. Патент РФ 2579583 C1. 2015.
  18. Yakovlev S.V., Artem’ev G.A., Rasputin N.A., Rusinov P.G., Nifant’ev I.E., Charushin V.N., Kopchuk D.S. // AIP Conf. Proceedings. 2019. V. 2063. Art. 040067. https://doi.org/10.1063/1.5087399
  19. Распутин Н.А., Яковлев С.В., Артемьев Г.А., Руси-нов П.Г., Нифантьев И.Э., Никонов И.Л., Коп-чук Д.С. // Журн. прикл. химии. 2021. Т. 94. № 6. С. 722–727. https://doi.org/10.31857/S0044461821060062
  20. Yan Q., Tsutsumi K., Nomura K. // RSC Adv. 2017. V. 7. P. 41345–41358. https://doi.org/10.1039/c7ra07581b
  21. Guo L., Dai S., Chen C. // Polymers. 2016. V. 8 № 2. Art. 37. https://doi.org/10.3390/polym8020037
  22. Tran Q.H., Brookhart M., Daugulis O. // J. Am. Chem. Soc. 2020. V. 142. № 15. P. 7198–7206. https://doi.org/10.1021/jacs.0c02045
  23. Kenyon P., Wörner M., Mecking S. // J. Am. Chem. Soc. 2018. V. 140. № 21. P. 6685–6689. https://doi.org/10.1021/jacs.8b03223
  24. Dai S., Zhou S., Zhang W., Chen C. // Macromolecules. 2016. V. 49. № 23. P. 8855–8862. https://doi.org/10.1021/acs.macromol.6b02104
  25. Dai S., Chen C. // Angew. Chem., Int. Ed. 2016. V. 55. № 42. P. 13281–13285. https://doi.org/10.1002/anie.201607152
  26. Liang T., Goudari S.B., Chen C. // Nat. Commun. 2020. V. 11. Art. 372. https://doi.org/10.1038/s41467-019-14211-0
  27. Antonov A.A., Sun W.-H., Bryliakov K.P. // Sci. China Chem. 2020. V. 63. № 6. P. 753–754. https://doi.org/10.1007/s11426-020-9708-3
  28. Smith B.C. // Spectroscopy. 2021. V. 36. № 9. P. 24–29. https://doi.org/10.56530/spectroscopy.xp7081p7
  29. Wunderlich B. Thermal Analysis. New York: Academic Press, 1990. 464 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (15KB)
3.

下载 (242KB)
4.

下载 (163KB)

版权所有 © Н.А. Распутин, И.А. Власов, С.В. Яковлев, Г.А. Артемьев, И.Л. Никонов, Д.С. Копчук, А.И. Матерн, В.Н. Чарушин, 2023

##common.cookie##