HETEROGENEOUS-CATALYTIC PROCESSES OF OXIDATIVE DESULFURIZATION WITH IONIC LIQUIDS PARTICIPATION. A REVIEW

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review analyzes recent publications about the search for new effective desulfurization technologies, in particular, oxidative desulfurization using ionic liquids. This technology is attracting attention due to its relatively mild conditions compared to hydrodesulfurization and its efficiency in removing heavy sulfur derivatives. Particularly effective are solid hybrid compositions consisting of a support (adsorbent) coated with an ionic liquid layer (extractant) containing catalytically active centers. Examples of the use of such systems for the desulfurization of model fuel and real oil feedstock are considered.

Авторлар туралы

I. Tarkhanova

Lomonosov Moscow State University, Faculty of Chemistry

Хат алмасуға жауапты Автор.
Email: itar_msu@mail.ru
Russian Federation, 119991, Moscow

A. Bryzhin

Lomonosov Moscow State University, Faculty of Chemistry

Email: itar_msu@mail.ru
Russian Federation, 119991, Moscow

A. Akopyan

Lomonosov Moscow State University, Faculty of Chemistry

Email: itar_msu@mail.ru
Russian Federation, 119991, Moscow

A. Anisimov

Lomonosov Moscow State University, Faculty of Chemistry

Email: itar_msu@mail.ru
Russian Federation, 119991, Moscow

E. Karakhanov

Lomonosov Moscow State University, Faculty of Chemistry

Email: itar_msu@mail.ru
Russian Federation, 119991, Moscow

Әдебиет тізімі

  1. Houda S., Lancelot C., Blanchard P., Poinel L., Lamo-nier C. // Catalysts. 2018. V. 8. № 9. P. 344. https://doi.org/10.3390/catal8090344
  2. Rajendran A., Cui T., Fan H., Yang Z., Feng J., Li W. // J. Mater. Chem. A. 2020. V. 8. № 5. P. 2246–2285. https://doi.org/10.1039/C9TA12555H
  3. Ahmadian M., Anbia M. // Energy fuels. 2021. Vol. 35. P. 10347–10373. https://doi.org/10.1021/acs.energyfuels.1c00862
  4. Lee K.X., Valla J.A. // React. Chem. Eng. 2019. V. 4. № 8. P. 1357–1386. https://doi.org/10.1039/C9RE00036D
  5. Crandall B.S., Zhang J., Stavila V., Allendorf M.D., Li Z. // Ind. Eng. Chem. Res. 2019. V. 58. № 42. P. 19322–19352. https://doi.org/10.1021/acs.iecr.9b03183
  6. Valenzuela C., Donoso C., Guzmán-Beckmann L. // Key Eng. Mater. 2020. V. 834. P. 42–48. https://doi.org/10.4028/www.scientific.net/KEM.834.42
  7. Ahmed O.U., Mjalli F.S., Al-Wahaibi A.W., Al-Wahaibi Y., AlNashef I.M. // Solution Chem. 2018. № 3. V. 47. P. 468–483. https://doi.org/10.1007/s10953-018-0732-1
  8. Романовский Б.В., Тарханова И.Г. // Усп. хим. 2017. Т. 86. № 5. С. 444–458. https://doi.org/10.1070/RCR4666
  9. Speight J.G. Handbook of Petroleum Refining. CRC Press., 2016. 789 p.
  10. Tanimu A., Alhooshani K. // Energy Fuels. 2019. V. 33. № 4. P. 2810–2838. https://doi.org/10.1021/acs.energyfuels.9b00354
  11. Ghubayra R., Nuttall C., Hodgkiss S., Craven M., Kozhevnikova E.F., Kozhevnikov I.V. // Appl. Catal. B. 2019. V. 253. P. 309–316. https://doi.org/10.1016/j.apcatb.2019.04.063
  12. Li J., Yang Z., Li S., Jin Q., Zhao J. // J. Ind. Eng. Chem. 2020. V. 82. P. 1–16. https://doi.org/10.1016/j.jiec.2019.10.020
  13. Тарханова И.Г., Али-Заде А.Г., Буряк А.К., Зелик-ман В.М. // Катализ в промышленности. 2022. Т. 22. № 4. С. 43–50. https://doi.org/10.18412/1816-0387-2022-4-43-50
  14. Брыжин А.А., Руднев В.С., Лукиянчук И.В., Васильева М.С., Тарханова И.Г. // Кинетика и катализ. 2020. Т. 61. № 2. С. 262–270. https://doi.org/10.31857/S0453881120020021
  15. Xun S., Zhu W., Chang Y., Li H., Zhang M., Jiang W., Zheng D., Qin Y., Li H. // Chem. Eng. J. 2016. V. 288. P. 608–617. https://doi.org/10.1016/j.cej.2015.12.005
  16. Li X., Zhang J., Zhou F., Wang Y., Yuan X., Wang H. // Mol. Catal. 2018. V. 452. P. 93–99. https://doi.org/10.1016/j.mcat.2017.09.038
  17. Abdullah W.N.W., Bakar W.A.W.A., Ali R., Mokh-tar W.N.A.W., Omar M.F. // J. Clean. Prod. 2017. V. 162. P. 1455–1464. https://doi.org/10.1016/j.jclepro.2017.06.084
  18. Hao Y., Hao Y., Ren J., Wu B., Wang X., Zhao D., Li F. // New J. Chem. 2019. V. 43. № 20. P. 7725–7732. https://doi.org/10.1039/C9NJ00691E
  19. Ivanin I.A., Ali-Zade A.G., Golubeva E.N., Zubano-va E.M., Zelikman V.M., Buryak A.K., Tarkhanova I.G. // Mol. Catal. 2020. V. 484. 110727. https://doi.org/10.1016/j.mcat.2019.110727
  20. Singh S.K., Savoy A.W. // J. Mol. Liq. 2020. V. 297. 112038. https://doi.org/10.1016/j.molliq.2019.112038
  21. Ohno H., Yoshizawa-Fujita M., Kohno Y. // Phys. Chem. Chem. Phys. 2018. V. 20. № 16. P. 10978–10991. https://doi.org/10.1039/C7CP08592C
  22. Amarasekara A.S. // Chem. Rev. 2016. V. 116. № 10. P. 6133–6183. https://doi.org/10.1021/acs.chemrev.5b00763
  23. Gerola A.P., Costa P.F.A., Quina F.H., Fiedler H.D., Nome F. // Curr. Opin. Colloid Interface Sci. 2017. V. 32. P. 39–47. https://doi.org/10.1016/j.cocis.2017.09.005
  24. Hatab F.A., Darwish A.S., Lemaoui T., Warrag S.E.E., Benguerba Y., Kroon M.C., AlNashef I.M. // J. Chem. Eng. Data. 2020. V. 65. № 11. P. 5443–5457. https://doi.org/10.1021/acs.jced.0c00579
  25. Abdullah S.B., Aziz H.A., Man Z. Ionic Liquids for Desulphurization: A Review. In: Recent Advances in Ionic Liquids. Rahman M.M. (Ed.). London, IntechOpen, 2018. P. 107–120. https://doi.org/10.5772/intechopen.79281
  26. Player L.C., Chan B., Lui M.Y., Masters A.F., Maschmeyer T. // ACS Sustain. Chem. Eng. 2019. V. 7. № 4. P. 4087–4093. https://doi.org/10.1021/acssuschemeng.8b05585
  27. Zhou J., Mao J., Zhang S. // Fuel Process. Technol. 2008. V. 89. № 12. P. 1456–1460. https://doi.org/10.1016/j.fuproc.2008.07.006
  28. Su B.M., Zhang S., Zhang Z.C. // J. Phys. Chem. B. 2004. V. 108. № 50. P. 19510–19517. https://doi.org/10.1021/jp049027l
  29. Hansmeier A.R., Meindersma G.W., Haan A.B. // Green Chem. 2011. V. 13. № 7. P. 1907–1913. https://doi.org/10.1039/C1GC15196G
  30. Oliveira O.V., Paluch A.S., Costa L.T. // Fuel. 2016. V. 175. № 1. P. 225-231. https://doi.org/10.1016/j.fuel.2016.02.016
  31. Li J., Lei X.J., Tang X.D., Zhang X.P., Wang Z.Y., Jiao S. // Energy Fuels. 2019. V. 33. № 5. P. 4079–4088. https://doi.org/10.1021/acs.energyfuels.9b00307
  32. Elwan H.A., Zaky M.T., Farag A.S., Soliman F.S., Ezel Dean Hassan M. // J. Mol. Liq. 2017. V. 248. P. 549–555. https://doi.org/10.1016/j.molliq.2017.10.077
  33. Ren Z., Wei L., Zhou Z., Zhang F., Liu W. // Energy Fuels. 2018. V. 32. № 9. P. 9172–9181. https://doi.org/10.1021/acs.energyfuels.8b01936
  34. Ibrahim M.H., Hayyan M., Hashim M.A., Hayyan A. // Renew. Sust. Energ. Rev. 2017. V. 76. P. 1534–1549. https://doi.org/10.1016/j.rser.2016.11.194
  35. Mai N.L., Ahn K., Koo Y.M. // Process Biochem. 2014. V. 49. № 5. P.872–881. https://doi.org/10.1016/j.procbio.2014.01.016
  36. Hao Y., Hao Y., Ren J., Wu B., Wang X., Zhao D., Li F. // New J. Chem. 2019. V. 43. № 20. P. 7725–7732. https://doi.org/10.1039/C9NJ00691E
  37. Jiang W., Zhu K., Li H., Zhu L., Hua M., Xiao J., Wang C., Yang Z., Chen G., Zhu W., Li H., Dai S. // Chem. Eng. J. 2020. V. 394. 124831. https://doi.org/10.1016/j.cej.2020.124831
  38. Lü H., Wang S., Deng C., Ren W., Guo B. // J. Hazard. Mater. 2014. V. 279. P. 220–225. https://doi.org/10.1016/j.jhazmat.2014.07.005
  39. Wang L., Wang H., Wang Y. // J. Mol. Struct. 2020. V. 1220. 128779. https://doi.org/10.1016/j.molstruc.2020.128779
  40. Jiang B., Yang H., Zhang L., Zhang R., Sun Y., Huang Y. // Chem. Eng. J. 2016. V. 283. P. 89–96. https://doi.org/10.1016/j.cej.2015.07.070
  41. García-Gutiérrez J.L., Fuentes G.A., Hernández-Terán M.E., García P., Murrieta-Guevara F., Jiménez-Cruz F. // Appl. Catal., A. 2008. V. 334. № 1–2. P. 366–373. https://doi.org/10.1016/j.apcata.2007.10.024
  42. Otsuki S., Nonaka T., Takashima N., Qian W., Ishihara A., Imai T., Kabe T. // Energy Fuels. 2000. V. 14. № 6. P. 1232–1239. https://doi.org/10.1021/ef000096i
  43. Акопян А.В., Есева Е.А., Поликарпова П.Д., Кедало А.А., Анисимов А.В. // Вестн. Моск. Ун-та. Сер. 2. Химия. 2019. Т. 60. № 6. С. 375–383. https://doi.org/10.3103/S0027131419060026
  44. Акопян А.В., Есева Е.А., Поликарпова П.Д., Байгильдиев Т.М., Родин И.А., Анисимов А.В. // Журн. прикл. химии. 2019. Т. 92. № 4. С. 531–537. https://doi.org/10.1134/S1070427219040141
  45. Akopyan A., Eseva E., Polikarpova P., Kedalo A., Vutolkina A., Glotov A. // Molecules. 2020. V. 25. C. 536–550. https://doi.org/10.3390/molecules25030536
  46. Bartlewicz O., Dąbek I., Szymańska A., Maciejewski H. // Catalysts. 2020. V. 10. № 11. 1227. https://doi.org/10.3390/catal10111227
  47. Fehrmann R., Riisager A., Haumann M. (Eds.) Suppor-ted Ionic Liquids. Weinheim. Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2014. 496 p.
  48. Steinrück H.-P., Wasserscheid P. // Catal. Lett. 2015. V. 145. № 1. P. 380–397. https://doi.org/10.1007/s10562-014-1435-x
  49. Naicker L., Friedrich H.B., Govender A., Mohlala P. // Appl. Catal., A. 2018. V. 562. P. 37–48. https://doi.org/10.1016/j.apcata.2018.05.018
  50. Friedrich M.F., Lucas M., Claus P. // Catal. Commun. 2017. V. 88. P. 73–76. https://doi.org/10.1016/j.catcom.2016.09.036
  51. Mondal P., Chatterjee S., Nurjamal K., Maity S., Bhaumik A., Brahmachari G., Ghosh P., Mukhopadhyay C. // Catal. Commun. 2020. V. 139. 105966. https://doi.org/10.1016/j.catcom.2020.105966
  52. Xu Z., Wan H., Miao J., Han M., Yang C., Guan G. // J. Mol. Catal. A: Chem. 2010. V. 332. № 1–2. P. 152–157. https://doi.org/10.1016/j.molcata.2010.09.011
  53. Li L.X., Ling Q.L., Liu Z.L., Xing X.D., Zhu X.Q., Meng X. // Bull. Korean Chem. Soc. 2012. V. 33. № 10. P. 3373–3377. https://doi.org/10.5012/bkcs.2012.33.10.3373
  54. Zhang Q., Luo J., Wei Y. // Green Chem. 2010. V. 12. № 12. P. 2246–2254. https://doi.org/10.1039/C0GC00472C
  55. Wang G., Yu N., Peng L., Tan R., Zhao H., Yin D., Qiu H., Fu Z., Yin D. // Catal. Lett. 2008. V. 123. № 3–4. P. 252–258. https://doi.org/10.1007/s10562-008-9415-7
  56. Jankowska-Wajda M., Bartlewicz O., Szpecht A., Zajac A., Smiglak M., Maciejewski H. // RSC Adv. 2019. V. 9. P. 29396–29404. https://doi.org/10.1039/C9RA05948B
  57. Lijewski M., Hogg J.M., Swadźba-Kwaśny M., Wasserscheid P., Haumann M. // RSC Adv. 2017. V. 7. № 44. P. 27558–27563. https://doi.org/10.1039/C7RA03295A
  58. Pavel O.D., Podolean I., Parvulescu V.I., Taylor S.F.R., Manyar H.G., Ralphs K., Goodrich P., Hardacre C. // Faraday Discuss. 2018. V. 206. P. 535–547. https://doi.org/10.1039/C7FD00159B
  59. Barth T., Korth W., Jess A. // Chem. Eng. Technol. 2017. V. 40. № 2. P. 395–404. https://doi.org/10.1002/ceat.201600140
  60. Podolean I., Pavel O.D., Manyar H.G., Taylor S.F.R., Ralphs K., Goodrich P., Pârvulescu V.I., Hardacre C. // Catal. Today. 2019. V. 333. P. 140–146. https://doi.org/10.1016/j.cattod.2018.07.014
  61. Safa M., Mokhtarani B., Mortaheb H.R., Tabar Heidar K., Sharifi A., Mirzaei M. // Energy Fuels. 2017. V. 31. № 9. P. 10196–10205. https://doi.org/10.1021/acs.energyfuels.6b03505
  62. Li X., Zhang J., Zhou F., Wang Y., Yuan X., Wang H. // Mol. Catal. 2018. V. 452. P. 93–99. https://doi.org/10.1016/j.mcat.2017.09.038
  63. Xun S., Zhu W., Chang Y., Li H., Zhang M., Jiang W., Zheng D., Qin Y., Li H. // Chem. Eng. J. 2016. V. 288. P. 608–617. https://doi.org/10.1016/j.cej.2015.12.005
  64. Ali-Zade A.G., Buryak A.K., Zelikman V.M., Oskolok K.V., Tarkhanova I.G. // New J. Chem. 2020. V. 44. № 16. P. 6402–6410. https://doi.org/10.1039/C9NJ05403K
  65. Bryzhin A.A., Gantman M.G., Buryak A.K., Tarkhano-va I.G. // Appl. Catal., B. 2019. V. 257. 117938. https://doi.org/10.1016/j.apcatb.2019.117938
  66. Брыжин А.А., Буряк А.К., Гантман М.Г., Зелик-ман В.М., Шилина М.И., Тарханова И.Г. // Кинетика и катализ. 2020. Т. 61. № 5. С. 688–699. https://doi.org/10.1134/S0023158420050018
  67. Jalil P.A., Faiz M., Tabet N., Hamdan N.M., Hussain Z. // J. Catal. 2003. V. 217. № 2. P. 292–297. https://doi.org/10.1016/S0021-9517(03)00066-6
  68. Craven M., Xiao D., Kunstmann-Olsen C., Kozhevniko-va E.F., Blanc F., Steiner A., Kozhevnikov I.V. // Appl. Catal., B. 2018. V. 231. P. 82–91. https://doi.org/10.1016/j.apcatb.2018.03.005
  69. Горбунов В.С., Брыжин А.А., Попов А.Г., Тархано-ва И.Г.// Нефтехимия. 2021. Т. 61. № 6. С. 858–868. https://doi.org/10.1134/S0965544121110086
  70. Vekariya R.L. // J. Mol. Liq. 2017. V. 227. P. 44–60. https://doi.org/10.1016/j.molliq.2016.11.123
  71. Tarkhanova I.G., Bryzhin A.A., Gantman M.G., Yaro-vaya T.P., Lukiyanchuk I.V., Nedozorov P.M., Rudnev V.S. // Surf. Coat. Technol. 2019. V. 362. P. 132–140. https://doi.org/10.1016/j.surfcoat.2019.01.101
  72. Bryzhin A.A., Tarkhanova I.G., Gantman M.G., Rud-nev V.S., Vasilyeva M.S., Lukiyanchuk I.V. // Surf. Coat. Technol. 2020. V. 393. 125746. https://doi.org/10.1016/j.surfcoat.2020.125746
  73. Брыжин А.А., Тарханова И.Г., Маслаков К.И., Николаев С.А., Гуревич С.А., Кожевин В.М., Явсин Д.А., Гантман М.Г, Ростовщикова Т.Н. // Журн. физ. химии. 2019. Т. 93. № 10. С. 1575–1583. https://doi.org/10.1134/S0036024419100029
  74. Ростовщикова Т.Н., Локтева Е.С., Шилина М.И., Голубина Е.В., Маслаков К.И., Кротова И.Н., Брыжин А.А., Тарханова И.Г., Удалова О.В., Кожевин В.М., Явсин Д.А., Гуревич С.А. // Журн. физ. химии. 2021. Т. 95. № 3. С. 348–373. https://doi.org/10.1134/S0036024421030171
  75. Gerola A.P., Costa P.F.A., Quina F.H., Fiedler H.D., Nome F // Curr. Opin. Colloid Interface Sci. 2017. V. 32. P. 39–47. https://doi.org/10.1016/j.cocis.2017.10.002
  76. Mayank M., Singh A., Raj P., Kaur R., Singh A., Kaur N., Singh N. // New J. Chem. 2017. V. 41. № 10. P. 3872–3881. https://doi.org/10.1039/C6NJ03763A
  77. Тарханова И.Г., Анисимов А.В., Буряк А.К., Бры-жин А.А., Али-Заде А.Г., Акопян А.В., Зеликман В.М. // Нефтехимия. 2017. Т. 57. № 5. С. 536–544. https://doi.org/10.1134/S0965544117100164
  78. Акопян А.В., Есева Е.А., Поликарпова П.Д., Кедало А.А., Анисимов А.В. // Вестн. Моск. Ун-та. Сер. 2. Химия. 2021. Т. 62. № 4. С. 360–370. https://doi.org/10.3103/S0027131421030020
  79. Акопян А.В., Есева Е.А., Арзяева Н.В., Таланова М.Ю., Поликарпова П.Д. // Нефтехимия. 2022. Т. 62. № 1. С. 111–118. https://doi.org/10.1134/S0965544122010169
  80. Akopyan A., Polikarpova P., Gul O., Anisimov A., Karakhanov E. // Energy Fuels. 2020. V. 34. № 11. P. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008
  81. Oxidation desulfurization method based on Lewis acid and ion liquid. PETROCHINA CO LTD; UNIV BEIJIN CHEMICAL. Патент КНР 103509590. 2012.
  82. Biomimetic oxidative desulfurization method for fuel in ionic liquid. SHANXI INST COAL CHEMISTRY. Патент КНР CN 105419853. 2012.
  83. Oxidation desulfurization method for rare earth poli-acid and ionic liquid extraction catalysis fuel oil. UNIV BEIJIN CHEMICAL. Патент КНР 102585888. 2012.
  84. Oxidative coupling extraction desulfurization of petroleum product as well as and ionic liquid and preparation method thereof. SHANXI INST COAL CHEMISTRY. Патент КНР 102525453. 2012.
  85. Catalytic oxidation oil product desulfurization method based on phosphotungststic acid ionic liquid. UNIV LIAONING SHIHUA. Патент КНР 104312261. 2014.
  86. Ionic liquid based oxidative extraction desulfurization method. UNIV EAST CHINA SCIENCE AND TECH. Патент КНР 105176570. 2008.
  87. Скороходова Т.С., Сачков В.И., Маракина Е.И., Коботаева Н.С., Андриенко О.С. Способ очистки дизельного топлива от серосодержащих соединений. Патент РФ 2673539. 2018.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (63KB)
3.

Жүктеу (16KB)
4.

Жүктеу (21KB)
5.

Жүктеу (25KB)
6.

Жүктеу (156KB)
7.

Жүктеу (88KB)
8.

Жүктеу (47KB)
9.

Жүктеу (326KB)
10.

Жүктеу (52KB)
11.

Жүктеу (23KB)
12.

Жүктеу (56KB)
13.

Жүктеу (488KB)
14.

Жүктеу (107KB)
15.

Жүктеу (113KB)
16.

Жүктеу (55KB)
17.

Жүктеу (206KB)
18.

Жүктеу (172KB)
19.

Жүктеу (177KB)
20.

Жүктеу (43KB)
21.

Жүктеу (678KB)
22.

Жүктеу (94KB)
23.

Жүктеу (21KB)
24.

Жүктеу (47KB)
25.

Жүктеу (98KB)
26.

Жүктеу (1MB)
27.

Жүктеу (1MB)
28.

Жүктеу (24KB)
29.

Жүктеу (29KB)
30.

Жүктеу (34KB)

© И.Г. Тарханова, А.А. Брыжин, А.В. Анисимов, А.В. Акопян, Э.А. Караханов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>