PHOTOSENSITIVITY OF PbS COLLOIDAL QUANTUM DOTS BASED NANOSTRUCTURES WITH AN ENERGY BARRIER

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new architecture of photosensitive elements for the near (0.7–1.4 μm) and short-wavelength (1.4–3.0 μm) infrared regions of the spectrum based on hybrid nanostructures consisting of PbS colloidal quantum dots and functional layers of ZnO and AgNW silver nanowires is proposed. Small-sized (12 × 12 μm) photosensitive elements with an energy barrier at the contact between layers of n- and p-type CQDs have been studied. The current-voltage characteristics, spectral dependences of optical absorption and relative spectral photosensitivity of Si(λ)/Simax) barrier structures at room temperature have been studied. It is shown that the proposed architecture of barrier structures provides photosensitivity in a wide spectral range from 0.4 µm to 2.0 µm. An excess of the average value of the relative spectral sensitivity Si(λ)/Simax) about 1.5 times compared to those previously observed in the wavelength range of 0.9–1.85 μm for barrier nanostructures from PbS CQDs was found.

作者简介

V. Popov

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Ivanov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

P. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

A. Katsaba

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

E. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

A. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

V. Gak

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

N. Lavrentiev

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

S. Brichkin

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

A. Gadomska

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

I. Shuklov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

D. Dymkin

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

V. Ponomarenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Razumov

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

参考

  1. Zandian M., Farris M., McLevige W. et al. Performance of Science Grade HgCdTe H4RG-15 Image Sensors // Proc. of SPIE. 2016. 9915, 99150F1. https://doi.org/10.1117/12.2233664
  2. Zhang J.-X., Wang W., Li Z.-B.et al. Development of a High Performance 1280 × 1024 InGaAs SWIR FPA Detector at Room Temperature // Front Phys. 2021. V. 9. 678192. https://doi.org/10.3389/fphy.2021.678192
  3. Thom R. High density infrared detector arrays // Patent US 4039833. 1977.
  4. Шуклов И.А., Разумов В.Ф. Коллоидные квантовые точки халькогенидов свинца для фотоэлектрических устройств // Успехи химии. 2020. Т. 89. № 3. С. 379–391. https://doi.org/10.1070/RCR4917
  5. Gregory C., Hilton A., Violette K. et al. Colloidal quantum dot sensor bandwidth and thermal stability: progress and outlook // Proc. of SPIE. 2022. 12107, 1210705. https://doi.org/10.1117/12.2618320
  6. Yuan Y., Xu J.-L., Zhang J.-Y. et al. Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes // IEEE Electron Device Letters. 2022.V. 43. P. 1275–1278. https://doi.org/10.1109/LED.2022.3183602
  7. Pejovic V., Georgitzikis E., Lee J. et al. Infrared Colloidal Quantum Dot Image Sensors // IEEE Transactions on Electron Device. 2021. V. 69. P. 2840–2850. https://doi.org/10.1109/TED.2021.3133191
  8. Попов В.С., Пономаренко В.П., Попов С.В. Фото- и наноэлектроника на основе двумерных 2D-материалов (обзор). Ч. III. Фотосенсоры на основе графена, графеноподобных и родственных моноатомных 2D-наноматериалов // Успехи прикладной физики. 2022. Т. 10. № 2. С. 144–169. https://doi.org/10.51368/2307-4469-2022-10-2-144-169
  9. Пономаренко В.П., Попов В.С., Попов С.В. Фотоэлектроника на основе квазинульмерных структур (обзор) // Успехи прикладной физики. 2021. Т. 9. № 1. С. 25–67. https://doi.org/10.51368/2307-4469-2021-9-1-25-67
  10. Brittman S., Colbert A.E., Brintlinger T.H. et al. Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots // J. Phys. Chem. Lett. 2019. V. 10. P. 1914–1918. https://doi.org/10.1021/acs.jpclett.9b00786
  11. Mayer R. Elemental Sulfur and its Reactions. Organic Chemistry of Sulfur / Ed. S. Oae. Springer-Verlag, 1977. P. 33–69.
  12. Beek W.J.E., Wienk M.M., Kemerink M. et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells // J. Phys. Chem. B. 2005. V. 109. P. 9505–9516. https://doi.org/10.1021/jp050745x
  13. Langley D., Giusti G., Mayousse C. et al. Flexible transparent conductive materials based on silver nanowire networks: a review // Nanotechnology. 2013. V. 24. 452001 (20 p.) https://doi.org/10.1088/0957-4484/24/45/452001
  14. Kao K.C., Hwang W. (Electrical Transport in Solids. Oxford: Pergamon Press, 1981. 663 p.
  15. Reich K.V. Conductivity of quantum dot arrays // Physics-Uspekhi. 2020. V. 63. P. 994–1084. https://doi.org/10.3367/UFNe.2019.08.038649
  16. Klem E., Lewis J., Gregory C. et al. Room Temperature SWIR Sensing from Colloidal Quantum Dot Photodiode Arrays // Proc. of SPIE. 2013. 8704, 870436. https://doi.org/10.1117/12.2019521
  17. Klem E.J.D., Lewis J., Gregory C. et al. Low Cost SWIR Sensors: Advancing the Performance of ROIC- Integrated Collodial Quantum Dot Photodiode Arrays // Proc. of SPIE. 2014. 9070, 907039. https://doi.org/10.1117/12.2054215
  18. Klem E.J.D., Gregory C., Temple D. et al. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE. 2015. 9451, 945104. https://doi.org/10.1117/12.2178532
  19. Hinds S., Klem E., Gregory C. et al. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers // Proc. of SPIE. 2020. 11407, 1140707. https://doi.org/10.1117/12.2559115

补充文件

附件文件
动作
1. JATS XML
2.

下载 (592KB)
3.

下载 (81KB)
4.

下载 (114KB)
5.

下载 (81KB)

版权所有 © В.С. Попов, В.П. Пономаренко, Д.В. Демкин, И.А. Шуклов, А.В. Гадомская, С.Б. Бричкин, Н.А. Лаврентьев, В.Ю. Гак, А.Е. Мирофянченко, Е.В. Мирофянченко, А.В. Кацаба, П.В. Арсенов, В.В. Иванов, В.Ф. Разумов, 2023

##common.cookie##