PHOTOSENSITIVITY OF PbS COLLOIDAL QUANTUM DOTS BASED NANOSTRUCTURES WITH AN ENERGY BARRIER

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new architecture of photosensitive elements for the near (0.7–1.4 μm) and short-wavelength (1.4–3.0 μm) infrared regions of the spectrum based on hybrid nanostructures consisting of PbS colloidal quantum dots and functional layers of ZnO and AgNW silver nanowires is proposed. Small-sized (12 × 12 μm) photosensitive elements with an energy barrier at the contact between layers of n- and p-type CQDs have been studied. The current-voltage characteristics, spectral dependences of optical absorption and relative spectral photosensitivity of Si(λ)/Simax) barrier structures at room temperature have been studied. It is shown that the proposed architecture of barrier structures provides photosensitivity in a wide spectral range from 0.4 µm to 2.0 µm. An excess of the average value of the relative spectral sensitivity Si(λ)/Simax) about 1.5 times compared to those previously observed in the wavelength range of 0.9–1.85 μm for barrier nanostructures from PbS CQDs was found.

Негізгі сөздер

Авторлар туралы

V. Popov

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Ivanov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

P. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

A. Katsaba

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

E. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

A. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

V. Gak

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

N. Lavrentiev

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

S. Brichkin

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

A. Gadomska

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

I. Shuklov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

D. Dymkin

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

V. Ponomarenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Razumov

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

Әдебиет тізімі

  1. Zandian M., Farris M., McLevige W. et al. Performance of Science Grade HgCdTe H4RG-15 Image Sensors // Proc. of SPIE. 2016. 9915, 99150F1. https://doi.org/10.1117/12.2233664
  2. Zhang J.-X., Wang W., Li Z.-B.et al. Development of a High Performance 1280 × 1024 InGaAs SWIR FPA Detector at Room Temperature // Front Phys. 2021. V. 9. 678192. https://doi.org/10.3389/fphy.2021.678192
  3. Thom R. High density infrared detector arrays // Patent US 4039833. 1977.
  4. Шуклов И.А., Разумов В.Ф. Коллоидные квантовые точки халькогенидов свинца для фотоэлектрических устройств // Успехи химии. 2020. Т. 89. № 3. С. 379–391. https://doi.org/10.1070/RCR4917
  5. Gregory C., Hilton A., Violette K. et al. Colloidal quantum dot sensor bandwidth and thermal stability: progress and outlook // Proc. of SPIE. 2022. 12107, 1210705. https://doi.org/10.1117/12.2618320
  6. Yuan Y., Xu J.-L., Zhang J.-Y. et al. Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes // IEEE Electron Device Letters. 2022.V. 43. P. 1275–1278. https://doi.org/10.1109/LED.2022.3183602
  7. Pejovic V., Georgitzikis E., Lee J. et al. Infrared Colloidal Quantum Dot Image Sensors // IEEE Transactions on Electron Device. 2021. V. 69. P. 2840–2850. https://doi.org/10.1109/TED.2021.3133191
  8. Попов В.С., Пономаренко В.П., Попов С.В. Фото- и наноэлектроника на основе двумерных 2D-материалов (обзор). Ч. III. Фотосенсоры на основе графена, графеноподобных и родственных моноатомных 2D-наноматериалов // Успехи прикладной физики. 2022. Т. 10. № 2. С. 144–169. https://doi.org/10.51368/2307-4469-2022-10-2-144-169
  9. Пономаренко В.П., Попов В.С., Попов С.В. Фотоэлектроника на основе квазинульмерных структур (обзор) // Успехи прикладной физики. 2021. Т. 9. № 1. С. 25–67. https://doi.org/10.51368/2307-4469-2021-9-1-25-67
  10. Brittman S., Colbert A.E., Brintlinger T.H. et al. Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots // J. Phys. Chem. Lett. 2019. V. 10. P. 1914–1918. https://doi.org/10.1021/acs.jpclett.9b00786
  11. Mayer R. Elemental Sulfur and its Reactions. Organic Chemistry of Sulfur / Ed. S. Oae. Springer-Verlag, 1977. P. 33–69.
  12. Beek W.J.E., Wienk M.M., Kemerink M. et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells // J. Phys. Chem. B. 2005. V. 109. P. 9505–9516. https://doi.org/10.1021/jp050745x
  13. Langley D., Giusti G., Mayousse C. et al. Flexible transparent conductive materials based on silver nanowire networks: a review // Nanotechnology. 2013. V. 24. 452001 (20 p.) https://doi.org/10.1088/0957-4484/24/45/452001
  14. Kao K.C., Hwang W. (Electrical Transport in Solids. Oxford: Pergamon Press, 1981. 663 p.
  15. Reich K.V. Conductivity of quantum dot arrays // Physics-Uspekhi. 2020. V. 63. P. 994–1084. https://doi.org/10.3367/UFNe.2019.08.038649
  16. Klem E., Lewis J., Gregory C. et al. Room Temperature SWIR Sensing from Colloidal Quantum Dot Photodiode Arrays // Proc. of SPIE. 2013. 8704, 870436. https://doi.org/10.1117/12.2019521
  17. Klem E.J.D., Lewis J., Gregory C. et al. Low Cost SWIR Sensors: Advancing the Performance of ROIC- Integrated Collodial Quantum Dot Photodiode Arrays // Proc. of SPIE. 2014. 9070, 907039. https://doi.org/10.1117/12.2054215
  18. Klem E.J.D., Gregory C., Temple D. et al. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE. 2015. 9451, 945104. https://doi.org/10.1117/12.2178532
  19. Hinds S., Klem E., Gregory C. et al. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers // Proc. of SPIE. 2020. 11407, 1140707. https://doi.org/10.1117/12.2559115

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (592KB)
3.

Жүктеу (81KB)
4.

Жүктеу (114KB)
5.

Жүктеу (81KB)

© В.С. Попов, В.П. Пономаренко, Д.В. Демкин, И.А. Шуклов, А.В. Гадомская, С.Б. Бричкин, Н.А. Лаврентьев, В.Ю. Гак, А.Е. Мирофянченко, Е.В. Мирофянченко, А.В. Кацаба, П.В. Арсенов, В.В. Иванов, В.Ф. Разумов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>