TRANSFER OF A DROP MATERIAL DURING THE PRIMARY CAVERN FORMATION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The transfer of a freely falling drop matter in the bulk of a target fluid at rest at the stage of primary cavity formation was traced by high-speed video recording for the first time. In the experiments, drops of water, ink solution (diluted in a ratio of 1:100) or a saturated solution of baking soda with a diameter of D = 0.43 cm fell with velocity of U = 3.1 m/s into fresh water or a 20% ammonium thiocyanate solution in the splash formation mode. In all experiments, the wall of the growing cavity was penetrated by thin fibers containing drop matter, which form an intermediate fine-structured layer. After the end of the fiber growth stage with a duration of 7–8 ms, the diffusion smoothed the concentration gradients, a liquid shell of intermediate density with a thickness of 1.5 to 0.7 mm was formed around the growing cavity. The shell is separated by a sharp boundary from the target fluid. A new group of inclined fibrous loops was formed in the wake of the collapsing cavity.

作者简介

Yu. Chashechkin

Ishlinsky Institute for Problems in Mechanics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: chakin@ipmnet.ru
Russia, Moscow

A. Ilyinykh

Ishlinsky Institute for Problems in Mechanics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ilynykh@ipmnet.ru
Russia, Moscow

参考

  1. Worthington A.M. On impact with a liquid surface // Proc. of the Royal Society of London. 1882. V. 34. Issue 217–230. https://books.google.it.ao/books?id=44vy9MMScQ0C&source=gbs_navlinks_s
  2. Engel O.G. Crater depth in fluid impacts // J. Appl. Phys. 1966. V. 37. P. 388–394. https://doi.org/10.1063/1.1708605
  3. Brutin D. Drop impingement on a deep liquid surface: study of a crater’s sinking dynamics // C. R. Mecanique. 2003. V. 331. P. 61–66. https://doi.org/10.1016/S1631-0721(02)00014-1
  4. Bisighini A., Cossali G.E., Tropea C., Roisman I.V. Crater evolution after the impact of a drop onto a semi-infinite liquid target // Phys. Rev. Phys. Rev. E 82 (3, Pt.2), 036319. https://doi.org/10.1103/PhysRevE.82.036319
  5. Fink J., Gault D., Greeley R. The Effect of Viscosity on Impact Cratering and Possible Application to the Icy Satellites of Saturn and Jupiter // J. Geophy. Res.: Solid Earth. 1984. V. 89 (B1). P. 417–423.
  6. Berberovic E., van Hinsberg N.P., Jakirlic S., Roisman I.V., Tropea C. Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution // Phys. Rev. 2009. V. E79. 036306. P. 1–15. https://doi.org/10.1103/PhysRevE.79.036306
  7. Zhang Y.J., Liu P.Q., Qu Q.L., Hu T.X. Energy conversion during the crown evolution of the drop impact upon films // Intern. J. Multiph. Flow. 2019. V. 115. P. 40–61. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.023
  8. Cai Y.K. Phenomena of a liquid drop falling to a liquid surface // Experiments in Fluids. 1989. V. 37. P. 388–394. https://doi.org/10.1063/1.857581
  9. Ersoy N.E., Eslamiana M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film // Phys. Fluids. 2019. V. 31. 012107. https://doi.org/10.1063/1.5064640
  10. Чашечкин Ю.Д., Ильиных А.Ю. Распад капли на отдельные волокна на границе области контакта с принимающей жидкостью // Доклады РАН. Физика, Технические науки. 2021. Т. 497. С. 31–35. https://doi.org/10.31857/S2686740021020139
  11. Li E.Q., Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383 821
  12. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. 286. https://doi.org/10.3390/axioms10040286.
  13. Чашечкин Ю.Д., Ильиных А.Ю. Полосчатые структуры в картине распределения вещества капли по поверхности принимающей жидкости // ДАН. 2018. Т. 481. № 2. С. 145–150. https://doi.org/10.1134/S1028335818070066
  14. Ильиных А.Ю., Чашечкин Ю.Д. Гидродинамика погружающейся капли: линейчатые структуры на поверхности венца // Известия РАН. Механика жидкости и газа. 2017. № 2. С. 152–165. https://doi.org/10.1134/S0015462817020144
  15. Чашечкин Ю.Д., Ильиных А.Ю. Формирование системы наклонных петель в течениях импакта капли // Доклады. Физика, технические науки. 2021. Т. 499. С. 39–48. https://doi.org/10.31857/S2686740021040052
  16. Müller S.C. Observation of Chemical Reactions Induced by Impact of a Droplet // The micro-world observed by ultra high-speed cameras. K. Tsuji (ed.). Springer International Publishing. AG 2018. P. 343–354. https://doi.org/10.1007/978-3-319-61491-5_16
  17. Чашечкин Ю.Д., Ильиных А.Ю. Визуализация областей контакта сред в течениях импакта капли с химическими реакциями // Доклады РАН. Физика, технические науки. 2021. Т. 500. С. 39–47. https://doi.org/10.31857/S2686740021050023
  18. Маленков Г.Г. Структура и динамика жидкой воды // Журнал структурной химии. 2006. Т. 47. Приложение. С. S5–S35.
  19. Маленков Г.Г. Структура и динамика поверхности тонких пленок и микрокапель воды. // Коллоидный журнал. 2010. Т. 72. № 5. С. 649–659.
  20. Villermaux E. Mixing Versus Stirring // Annual Review of Fluid Mechanics. 2019. Vol. 51. C. 245–273. https://doi.org/10.1146/annurev-fluid-010518-040306
  21. Чашечкин Ю.Д. Эволюция тонкоструктурного распределения вещества свободно падающей капли в смешивающихся жидкостях // Известия РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 67–77. https://doi.org/10.1134/S0001433819020026
  22. Чашечкин Ю.Д. Перенос вещества окрашенной капли в слое жидкости с бегущими плоскими гравитационно-капиллярными волнами // Известия РАН. Физика атмосферы и океана. 2022. Т. 58. № 2. С. 218–289. https://doi.org/10.31857/S0002351522020031
  23. Singh A., Kumar P. Droplet impact dynamics onto a deep liquid pool of wavy free surface // Phys. Fluids. 2022. 34. 022107. https://doi.org/10.1063/5.008453
  24. van Hinsberg N.P., Charbonneau-Grandmaison M. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics // Phys Rev E. 2015. V. 92. 013004. https://doi.org/10.1103/PhysRevE.92.013004
  25. УИУ “ГФК ИПМех РАН”: http://www.ipmnet.ru/uniqequip/gfk/#equip.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (3MB)
3.

下载 (791KB)
4.

下载 (3MB)
5.

下载 (1MB)
6.

下载 (53KB)

版权所有 © Ю.Д. Чашечкин, А.Ю. Ильиных, 2022

##common.cookie##