Новые маркеры для определения химического и изомерного состава каротиноидов методом спектроскопии комбинационного рассеяния

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проанализированы экспериментальные и рассчитанные на основе теории функционала плотности спектры комбинационного рассеяния каротиноидов растительного и бактериального происхождения: нейроспорина, сфероидена, ликопина, спириллоксантина, β-каротина, лютеина, ζ-каротина, α-каротина и γ-каротина. Впервые описан ряд характерных особенностей в спектрах комбинационного рассеяния каротиноидов, позволяющих определять структуру концевых групп молекул и различать их изомеры.

Об авторах

Д. Д. Васимов

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: vs.novikov@kapella.gpi.ru
Россия, Москва

А. А. Ашихмин

Федеральный исследовательский центр
“Пущинский научный центр биологических исследований Российской академии наук”

Email: vs.novikov@kapella.gpi.ru
Россия, Московская обл., Пущино

М. А. Большаков

Федеральный исследовательский центр
“Пущинский научный центр биологических исследований Российской академии наук”

Email: vs.novikov@kapella.gpi.ru
Россия, Московская обл., Пущино

М. Н. Московский

Федеральный научный агроинженерный центр ВИМ

Email: vs.novikov@kapella.gpi.ru
Россия, Москва

С. В. Гудков

Институт общей физики им. А.М. Прохорова Российской академии наук; Федеральный научный агроинженерный центр ВИМ

Email: vs.novikov@kapella.gpi.ru
Россия, Москва; Россия, Москва

Д. В. Яныкин

Институт общей физики им. А.М. Прохорова Российской академии наук; Федеральный исследовательский центр
“Пущинский научный центр биологических исследований Российской академии наук”

Email: vs.novikov@kapella.gpi.ru
Россия, Москва; Россия, Московская обл., Пущино

В. С. Новиков

Институт общей физики им. А.М. Прохорова Российской академии наук

Автор, ответственный за переписку.
Email: vs.novikov@kapella.gpi.ru
Россия, Москва

Список литературы

  1. Thomas D.B. et al. Non-destructive descriptions of carotenoids in feathers using Raman spectroscopy // Anal. Methods. 2014. V. 6. № 5. P. 1301–1308. https://doi.org/10.1039/C3AY41870G
  2. Elvira-Torales L.I., García-Alonso J., Periago-Castón M.J. Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review // Antioxidants. 2019. V. 8. № 7. P. 229. https://doi.org/10.3390/antiox8070229
  3. Meléndez-Martínez A.J., Stinco C.M., Mapelli-Brahm P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene // Nutrients. 2019. V. 11. № 5. P. 1093. https://doi.org/10.3390/nu11051093
  4. Mohanty I. et al. Lycopene prevents sugar-induced morphological changes and modulates antioxidant status of human lens epithelial cells // Br. J. Nutr. 2002. V. 88. № 4. P. 347–354. https://doi.org/10.1079/BJN2002659
  5. Brown L. et al. A prospective study of carotenoid intake and risk of cataract extraction in US men // Am. J. Clin. Nutr. 1999. V. 70. № 4. P. 517–524. https://doi.org/10.1093/ajcn/70.4.517
  6. Johnson E.J. The Role of Carotenoids in Human Health // Nutr. Clin. Care. 2002. V. 5. № 2. P. 56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x
  7. Böhm V. et al. Trolox Equivalent Antioxidant Capacity of Different Geometrical Isomers of α-Carotene, β-Carotene, Lycopene, and Zeaxanthin // J. Agric. Food Chem. 2002. V. 50. № 1. P. 221–226. https://doi.org/10.1021/jf010888q
  8. Demmig-Adams B., Gilmore A.M., Iii W.W.A. In vivo functions of carotenoids in higher plants // FASEB J. 1996. V. 10. № 4. P. 403–412. https://doi.org/10.1096/fasebj.10.4.8647339
  9. Khoo H.-E. et al. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables // Molecules. 2011. V. 16. № 2. P. 1710–1738. https://doi.org/10.3390/molecules16021710
  10. Guo W.-H.H., Tu C.-Y.Y., Hu C.-H.H. Cis–Trans Isomerizations of β-Carotene and Lycopene: A Theoretical Study // J. Phys. Chem. B. 2008. V. 112. № 38. P. 12158–12167. https://doi.org/10.1021/jp8019705
  11. Britton G. Carotenoids // Natural Food Colorants. Boston, MA: Springer US, 1996. P. 197–243. https://doi.org/10.1007/978-1-4615-2155-6_7
  12. Stahl W. et al. Separation of beta-carotene and lycopene geometrical isomers in biological samples. // Clin. Chem. 1993. V. 39. № 5. P. 810–814.
  13. Boileau T.W.-M., Boileau A.C., Erdman J.W. Bioavailability of all-trans and cis–Isomers of Lycopene // Exp. Biol. Med. 2002. V. 227. № 10. P. 914–919. https://doi.org/10.1177/153537020222701012
  14. Wang H. et al. Antioxidant, anticancer activity and molecular docking study of lycopene with different ratios of Z-isomers // Curr. Res. Food Sci. 2023. V. 6. P. 100455. https://doi.org/10.1016/j.crfs.2023.100455
  15. Lademann J. et al. Carotenoids in human skin // Exp. Dermatol. 2011. V. 20. № 5. P. 377–382. https://doi.org/10.1111/j.1600-0625.2010.01189.x
  16. Smith G.D., Jaffe R.L. Quantum chemistry study of conformational energies and rotational energy barriers in n-alkanes // J. Phys. Chem. 1996. V. 100. № 48. P. 18718–18724. https://doi.org/10.1021/jp960413f
  17. Новиков В.С., Кузнецов С.М., Кузьмин В.В., Прохоров К.А., Сагитова Е.А., Дарвин М.Е., Ладеманн Ю., Устынюк Л.Ю., Николаева Г.Ю. Анализ природных и синтетических соединений, содержащих полиеновые цепи, методом спектроскопии комбинационного рассеяния // Доклады РАН. Физика, технические науки. 2021. Т. 500. С. 26–33. https://doi.org/10.31857/S2686740021050060
  18. Darvin M.E., Gersonde I., Ey S., Brandt N. N., Albrecht H., Gonchukov S.A., Sterry W. and J.L. Noninvasive selective detection of lycopene and β-carotene in human skin using Raman spectroscopy // Laser Phys. 2004. V. 14. № 2. P. 231–233.
  19. Ishigaki M. et al. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies // J. Phys. Chem. B. 2017. V. 121. № 34. P. 8046–8057. https://doi.org/10.1021/acs.jpcb.7b04814
  20. Novikov V.S. et al. Relations between the Raman spectra and molecular structure of selected carotenoids: DFT study of α-carotene, β-carotene, γ-carotene and lycopene // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. Elsevier, 2022. V. 270. P. 120755. https://doi.org/10.1016/j.saa.2021.120755
  21. Novikov V.S. et al. DFT study of Raman spectra of polyenes and ß-carotene: Dependence on length of polyene chain and isomer type // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. Elsevier B.V. 2021. V. 255. P. 119668. https://doi.org/10.1016/j.saa.2021.119668
  22. Ashikhmin A., Makhneva Z., Moskalenko A. The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis // Photosynth. Res. 2014. V. 119. № 3. P. 291–303. https://doi.org/10.1007/s11120-013-9947-6
  23. Ashikhmin A. et al. Incorporation of spheroidene and spheroidenone into light-harvesting complexes from purple sulfur bacteria // J. Photochem. Photobiol. B Biol. 2017. V. 170. P. 99–107. https://doi.org/10.1016/j.jphotobiol.2017.03.020
  24. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559 // Proc. Natl. Acad. Sci. 1987. V. 84. № 1. P. 109–112. https://doi.org/10.1073/pnas.84.1.109
  25. Laikov D.N., Ustynyuk Y.A. PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing // Russ. Chem. Bull. 2005. V. 54. № 3. P. 820–826. https://doi.org/10.1007/s11172-005-0329-x
  26. Lunde K., Zechmeister L. Infrared Spectra and cis-trans Configurations of Some Carotenoid Pigments // J. Am. Chem. Soc. 1955. V. 77. № 6. P. 1647–1653. https://doi.org/10.1021/ja01611a071
  27. Koyama Y. et al. Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations // J. Raman Spectrosc. 1988. V. 19. № 1. P. 37–49. https://doi.org/10.1002/jrs.1250190107
  28. Koyama Y. et al. Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of β-carotene // Biochim. Biophys. Acta – Bioenerg. 1982. V. 680. № 2. P. 109–118. https://doi.org/10.1016/0005-2728(82)90001-9
  29. Saito S., Tasumi M., Eugster C.H. Resonance Raman spectra (5800–40 cm–1) of All-trans and 15-cis isomers of β-carotene in the solid state and in solution. Measurements with various laser lines from ultraviolet to red // J. Raman Spectrosc. 1983. V. 14. № 5. P. 299–309. https://doi.org/10.1002/jrs.1250140503
  30. Telfer A. What is β–carotene doing in the photosystem II reaction centre? // Philos. Trans. R. Soc. London. Ser. B Biol. Sci. / ed. Barber J., Anderson J.M. 2002. V. 357. № 1426. P. 1431–1440. https://doi.org/10.1098/rstb.2002.1139
  31. Bialek-Bylka G.E. et al. 15-cis-carotenoids found in the reaction center of a green sulfur bacterium Chlorobium tepidum and in the Photosystem I reaction center of a cyanobacterium Synechococcus vulcanus // Photosynth. Res. 1998. V. 58. № 2. P. 135–142. https://doi.org/10.1023/A:1006112323144

Дополнительные файлы


© Д.Д. Васимов, А.А. Ашихмин, М.А. Большаков, М.Н. Московский, С.В. Гудков, Д.В. Яныкин, В.С. Новиков, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах