Inversion of surface conductivity type in correlated topological insulator SmB6

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The potential to control the type of surface conductivity in the correlated topological insulator SmB6 was demonstrated for the first time. The transition to p-type surface conductivity with the Hall effect sign inversion at helium temperatures was achieved by cleaning the SmB6 faces formed by the (110) surfaces with the help of argon ion sputtering with an average energy of 500 eV. The crossover in the surface conductivity type with a dominant contribution from surface holes (having mobility up to 60 cm2V−1s−1 at 2 K) is associated with both the removal of carbon from the surface of SmB6 and its passivation by oxygen, and with the generation of defects in the near-surface layer initiated by ion bombardment. The discovered effect opens up possibilities for modifying the parameters of surface electron transport in the correlated topological insulator SmB6 by means of the controlled injection of defects or due to the field effect.

Sobre autores

V. Glushkov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: glushkov@lt.gpi.ru
Moscow, Russian Federation

A. Bozhko

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: glushkov@lt.gpi.ru
Moscow, Russian Federation

V. Zhurkin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: glushkov@lt.gpi.ru
Moscow, Russian Federation

V. Shevlyuga

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: glushkov@lt.gpi.ru
Moscow, Russian Federation

B. Andryushechkin

Prokhorov General Physics Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: glushkov@lt.gpi.ru
Moscow, Russian Federation

Bibliografia

  1. Kikoin K.A., Mishchenko A.S. Magnetic excitations in intermediate-valence semiconductors with a singlet ground state // J. Phys. Condens. Matter. 1995. V. 7. No 2. P. 307–314. https://doi.org/10.1088/0953-8984/7/2/008
  2. Sluchanko N.E., Glushkov V.V., Gorshunov B.P, Demishev S.V., Kondrin M.V., Pronin A.A., Volkov A.A., Savchenko A.K., Grűner G., Bruynseraede Y, Moshchalkov V.V., Kunii S. Intragap states in SmB6 // Phys. Rev. B. 2000. V. 61. No 15. P. 9906–9909. https://doi.org/10.1103/PhysRevB.61.9906
  3. Akintola K., Pal A., Dunsiger S.R., Fang A.C.Y., Potma M., Saha Sh.R., Wang X., Paglione J., Sonier J.E. Freezing out of a low-energy bulk spin exciton in SmB6 // Quantum Materials. 2018. V. 3. I. 1. P. 36–1–6. https://doi.org/10.1038/s41535-018-0110-7
  4. Зюзин В.А. Эффект де Гааза–ван Альфена и гигантский температурный пик в тяжелофермионном материале SmB6 // Письма в ЖЭТФ. 2024. Т. 120. В. 10. С. 802–807. https://doi.org/10.31857/S0370274X24110215
  5. Zyuzin V.A. JETP Letters, 120 (10), р. 766–771 (2024).
  6. Neupane M., Alidoust N., Xu S-Y., Kondo T., Ishida Y., Kim D.J., Liu Ch., Belopolski I., Jo Y.J., Chang T-R., Jeng H-T., Durakiewicz T., Balicas L., Lin H., Bansil A., Shin S., Fisk Z., Hasan M.Z. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6 // Nat. Commun. 2013. V. 4. No 1. P. 2991–1–7. https://doi.org/10.1038/ncomms3991
  7. Li L., Sun K., Kurdak C., Allen J.W. Emergent mystery in the Kondo insulator samarium hexaboride // Nat. Rev. Phys. 2020. V. 2. I. 9. P. 463–479. https://doi.org/10.1038/s42254-020-0210-8
  8. Демишев С.В., Анисимов М.А., Воронов В.В., Гильманов М.И., Глушков В.В., Карасев М.С., Филипов В.Б., Шицевалова Н.Ю. Поверхностная проводимость топологического кондо-изолятора SmB6, легированного иттербием // Доклады РАН. Физика, технические науки. 2020. Т. 493. В. 1. С. 23–28. https://doi.org/10.31857/S2686740020040057
  9. Demishev S.V., Anisimov M.A., Voronov V.V., Gilmanov M.I., Glushkov V.V., Karasev M.S., Filipov V.B., and Shitsevalova N.Yu. Doklady Physics, 65 (7), р. 9–13 (2020).
  10. Suga S., Sakamoto K., Okuda T., Miyamoto K., Kenta K., Sekiyama A., Yamaguchi J., Fujiwara H., Irizawa A., Ito T., Kimura Sh., Balashov T., Wulfhekel W., Yeo S., Iga F., Imada S. Spin-Polarized Angle-Resolved Photoelectron Spectroscopy of the So-Predicted Kondo Topological Insulator SmB6 // J. Phys. Soc. Japan. 2014. V. 83. No 1. P. 014705–1–6. https://doi.org/10.7566/JPSJ.83.014705
  11. Hlawenka P., Siemensmeyer K., Weschke E., Varykhalov A., Sánchez-Barriga J., Shitsevalova N.Y., Dukhnenko A.V., Filipov V.B., Gabáni S., Flachbart K., Rader O., Rienks E.D.L. Samarium hexaboride is a trivial surface conductor // Nat. Comm. 2018. V. 9. No 1. P. 517–1–7. https://doi.org/10.1038/s41467-018-02908-7
  12. Zonno M., Michiardi M., Boschini F., Levy G., Volckaert K., Curcio D., Bianchi M., Rosa P.F.S., Fisk Z., Hofmann Ph., Elfimov I.S., Green R.J., Sawatzky G.A., Damascelli A. Mixed-valence state in the dilute-impurity regime of La-substituted SmB6 // Nat. Comm. 2024. V. 15. I. 1. P. 7621–1–7. https://doi.org/10.1038/s41467-024-51569-2
  13. Herrmann H., Hlawenka P., Siemensmeyer K., Weschke E., Sánchez-Barriga J., Varykhalov A., Shitsevalova N.Y., Dukhnenko A.V., Filipov V.B., Gabáni S., Flachbart K., Rader O., Sterrer M., Rienks E.D.L. Contrast Reversal in Scanning Tunneling Microscopy and Its Implications for the Topological Classification of SmB6 // Adv. Mater. 2020. V. 32. I. 10. P. 1906725–1–5. https://doi.org/10.1002/adma.201906725
  14. Matt С.E., Pirie H., Soumyanarayanan A., Yang H., Yee M.M., Chen P., Yu L., Larson D.T., Paz W.S., Palacios J.J., Hamidian M.H., Hoffman J.E. Consistency between ARPES and STM measurements on SmB6 // Phys. Rev. B. 2020. V. 101. I. 8. P. 085142–1–7. https://doi.org/10.1103/PhysRevB.101.085142
  15. Wirth S., Schlottmann P. An STM Perspective on Hexaborides: Surface States of the Kondo Insulator SmB6 // Adv. Quantum Technol. 2021. V. 4. I. 12. P. 2100102–1–21. https://doi.org/10.1002/qute.202100102
  16. Kim D.J., Thomas S., Grant T., Botimer J., Fisk Z., Xia J. Surface Hall effect and nonlocal transport in SmB6: Еvidence for surface conduction // Sci. Rep. 2013. V. 3. I. 1. P. 3150–1–4. https://doi.org/10.1038/srep03150
  17. Crivillero M.V.A., König M., Souza J.C., Pagliuso P.G., Sichelschmidt J., Rosa P.F.S., Fisk Z., Wirth S. Systematic manipulation of the surface conductivity of SmB6 // Phys. Rev. Res. 2021. V. 3 I. 2. P. 023162–1–7. https://doi.org/10.1103/PhysRevResearch.3.023162
  18. Eo Y.S., Rakoski A., Sinha S., Mihaliov D., Fuhrman W.T., Saha S.R., Rosa P.F.S., Fisk Z., Hatnean M.C., Balakrishnan G., Chamorro J.R., Phelan W.A., Koohpayeh S.M., McQueen T.M., Kang B., Song M., Cho B., Fuhrer M.S., Paglione J., Kurdak Ç. Bulk transport paths through defects in floating zone and Al flux grown SmB6 // Phys. Rev. Mater. 2021. V. 5. I. 5. P. 055001–1–9. https://doi.org/10.1103/PhysRevMaterials.5.055001
  19. Syers P., Kim D., Fuhrer M. S., Paglione J. Tuning Bulk and Surface Conduction in the Proposed Topological Kondo Insulator SmB6 // Phys. Rev Lett. 2015. V. 114. I. 9. P. 096601–1–5. https://doi.org/10.1103/PhysRevLett.114.096601
  20. Kong D., Chen Y., Cha J.J., Zhang Q., Analytis J.G., Lai K., Liu Z., Hong S.S., Koski K.J., Mo S.-K., Hussain Z., Fisher I.R., Shen Z.-X., Cui Y. Ambipolar field effect in the ternary topological insulator (BixSb1–x)2Te3 by composition tuning // Nat. Nanotech. 2011. V. 6. I. 11. P. 705–709. https://doi.org/10.1038/nnano.2011.172
  21. Глушков В.В., Журкин В.С., Божко А.Д., Кудрявцев О.С., Андрюшечкин Б.В., Комаров Н.С., Воронов В.В., Шицевалова Н.Ю., Филипов В.Б. Критерий поверхностного электронного транспорта в коррелированном топологическом изоляторе SmB6 // Письма в ЖЭТФ. 2022. Т. 116, В.11. С. 770–776. https://doi.org/10.31857/S123456782223005
  22. Glushkov V.V., Zhurkin V.S., Bozhko A.D., Kudryavtsev O.E., Andryushechkin B.V., Komarov N.S., Voronov V.V., Shitsevalova N.Yu., and Filipov V.B. JETP Letters, 116 (11), р. 791–797 (2022).
  23. Shitsevalova N.Yu. Crystal chemistry and crystal growth of rare-earth borides / In: D. S. Inosov (Ed.), Rare-Earth Borides. N.Y.: Jenny Stanford Publishing, 2021. Ch. 1. P. 1–238.
  24. Коваленко C.Л., Павлова Т.В., Андрюшечкин Б.В., Ельцов К.Н. Термопрограммируемый синтез монокристаллов квазисвободного N-графена из молекул ацетонитрила // Письма в ЖЭТФ. 2020. Т. 111. В. 10. С. 697–704. https://doi.org/10.31857/S1234567820100092
  25. Kovalenko S.L., Pavlova T.V., Andryushechkin B.V., and Eltsov K.N. JETP Letters, 111 (10), р. 591–597 (2020).
  26. Madden H.H. J. Vac. Sci. Technol., 18 (3), р. 677–689 (1981).
  27. Madden H.H. Chemical information from Auger electron spectroscopy // J. Vac. Sci. Technol. 1981. V. 18. I. 3. P. 677–689. https://doi.org/10.1116/1.570927
  28. Joyner D.J., Hercules D.M. Chemical bonding and electronic structure of B2O3, H3BO3, and BN: An ESCA, Auger, SIMS, and SXS study // J. Chem. Phys. 1980. V. 72. I. 2. P. 1095–1108. https://doi.org/10.1063/1.439251
  29. Sittler J.A., Park W.K. Self-oxidation-formed boron oxide as a tunnel barrier in SmB6 junctions // J. All. Comp. 2021. V. 874. P. 159841–1–8. https://doi.org/10.1016/j.jallcom.2021.159841
  30. Zabolotnyy V.B., Fürsich K., Green R.J., Lutz P., Treiber K., Min C.-H., Dukhnenko A.V., Shitsevalova N.Y., Filipov V.B., Kang B.Y., Cho B.K., Sutarto R., He F., Reinert F., Inosov D.S., Hinkov V. Chemical and valence reconstruction at the surface of SmB6 revealed by means of resonant soft x-ray reflectometry // Phys. Rev. B. 2018. V. 97. I. 20. P. 205416–1–12. https://doi.org/10.1103/PhysRevB.97.205416

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).