RAMAN-GEOTHERMOMETER FOR CARBONACEOUS CHONDRITES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Samples of the Murchison meteorite (carbonaceous chondrite, type CM2) were kept isothermally in a specially designed device at temperatures of 200, 500 and 800°C. After the samples cooled down in an inert helium atmosphere, Raman scattering spectra were taken. An increase in the intensity of the G- and D-lines of graphite was detected depending on the degree of heating. It is shown that using such a characteristic parameter of these lines as the area ratio, SD/SG, it is possible to define a geothermometer to determine the maximum temperature of thermal metamorphism of the parent bodies of carbonaceous chondrites. A comparison with the known data for carbonaceous chondrite Allende (CM3), which has experienced a significant thermal metamorphism, is carried out.

Sobre autores

S. Voropaev

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: voropaev@geokhi.ru
Russia, Moscow

A. Krivenkо

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russia, Moscow

N. Dushenkо

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russia, Moscow

Bibliografia

  1. Маров М.Я., Ипатов С.И. Процессы миграции в Солнечной системе и их роль в эволюции Земли и планет // УФН. 2023. Т. 193. С. 2–32.
  2. Tuinstra F., Koenig J.L. Raman spectrum of graphite // J. Chemical Physics. 1970. V. 53. P. 1126–1130.
  3. Wopenka B., Pasteris J.D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy // American Mineralogist. 1993. V. 78. P. 533–557.
  4. Воропаев С.А., Душенко Н.В., Федулов В.С., Сенин В.Г. Особенности дегазации азота хондрита Dhajala (H3.8) // Доклады РАН. Физика, технические науки. 2023. Т. 509. № 2. С. 20–26.
  5. Voropaev S., Boettger U., Pavlov S., Hanke F., Petukhov D. Raman spectra of the Markovka chondrite (H4) // J. Raman spectroscopy. 2021. P. 1–9. https://doi.org/10.1002/jrs.6147
  6. Botta O., Bada J. Extraterrestrial organic compounds in meteorites // Surveys in Geophysics. 2002. V. 23. P. 411–467.
  7. Zolensky M., Barrett R., and Browning L. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites // Geochim. Cosmochim. Acta. 1993. V. 57. P. 3123–3148.
  8. Krot A.N., Scott E.R.D., Zolensky M.E. Mineralogic and chemical variations among CV3 chondrites and their components: Nebular and asteroidal processing // Meteoritics. 1995. V. 30. P. 748–775.
  9. Busemann H., Alexander C., Nittler L. Characterization of insoluble organic matter in primitive meteorites by micro Raman spectroscopy // Meteoritics & Planetary Science. 2007. V. 42 (7/8). P. 1387–1416.
  10. Schultz P.H. et al. The LCROSS Cratering Experiment // Science. 2010. V. 330. P. 468–472.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (134KB)
3.

Baixar (233KB)
4.

Baixar (20KB)
5.

Baixar (64KB)

Declaração de direitos autorais © С.А. Воропаев, А.П. Кривенко, Н.В. Душенко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies